\[ y'(x)=e^{-2 b x} y(x) \left (e^{b x} y(x)+e^{2 b x}+y(x)^2\right ) \] ✓ Mathematica : cpu = 1.03914 (sec), leaf count = 1
\[\{\}\]
✓ Maple : cpu = 0.451 (sec), leaf count = 134
\[ \left \{ y \left ( x \right ) =-{\frac {1}{2}\tan \left ( {\it RootOf} \left ( -\ln \left ( {(4\, \left ( \tan \left ( {\it \_Z} \right ) \right ) ^{2}b-3\, \left ( \tan \left ( {\it \_Z} \right ) \right ) ^{2}+4\,b-3) \left ( \tan \left ( {\it \_Z} \right ) \sqrt {- \left ( {{\rm e}^{bx}} \right ) ^{2} \left ( 4\,b-3 \right ) }+{{\rm e}^{bx}} \right ) ^{-2}} \right ) \sqrt {- \left ( {{\rm e}^{bx}} \right ) ^{2} \left ( 4\,b-3 \right ) }+{\it \_C1}\,\sqrt {- \left ( {{\rm e}^{bx}} \right ) ^{2} \left ( 4\,b-3 \right ) }-2\,x\sqrt {- \left ( {{\rm e}^{bx}} \right ) ^{2} \left ( 4\,b-3 \right ) }+2\,{\it \_Z}\,{{\rm e}^{bx}} \right ) \right ) \sqrt { \left ( -4\,b+3 \right ) \left ( {{\rm e}^{bx}} \right ) ^{2}}}-{\frac {{{\rm e}^{bx}}}{2}} \right \} \]