2.115   ODE No. 115

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

x(y(x)x)x2+y(x)2+xy(x)y(x)=0 Mathematica : cpu = 0.128875 (sec), leaf count = 81

{{y(x)x(2e2c1+x22+e2(2c1+x2)1)2e2c1+x22+e2(2c1+x2)1}}

Maple : cpu = 0.247 (sec), leaf count = 49

{ln(2x(2(y(x))2+2x2+y(x)+x)y(x)x)+2x22ln(x)_C1=0}

Hand solution

xy=x(yx)y2x2+y

Let y=xu, then y=u+xu and the above becomes

x(u+xu)=x(xux)(xu)2x2+xu(u+xu)=(xux)(xu)2x2+uxu=(xux)xu21u=x(u1)u21

Separable.

du(u1)u21=xdxu1u21=x22+C

But y=xu, hence

yx1(yx)21=x22+C

Let yx=z

z1z21=x22+Cz1=z21(x22+C)(z1)2=(z21)(x22+C)2z2+1+2z=z2(x22+C)2(x22+C)2z2(1(x22+C)2)+2z+1+(x22+C)2=0

Solving for z (quadratic formula, some conditions apply), one of the solutions is

z=4Cx2+4C2+x4+44Cx2+4C2+x44

Hence

y=x4Cx2+4C2+x4+44Cx2+4C2+x44

Need to work on verification. Kamke gives the final solution as

y=x2Cx2+C2+x4+42Cx2+C2+x44

I am not sure where my error now is. Need to look at this again.