\[ a y'(x)+x^2 y''(x)-x y(x)=0 \] ✗ Mathematica : cpu = 0.545533 (sec), leaf count = 0 , DifferentialRoot result
\[\left \{\left \{y(x)\to \text {DifferentialRoot}\left (\{\unicode {f818},\unicode {f817}\}\unicode {f4a1}\left \{\unicode {f818}''(\unicode {f817}) \unicode {f817}^2-\unicode {f818}(\unicode {f817}) \unicode {f817}+a \unicode {f818}'(\unicode {f817})=0,\unicode {f818}(1)=c_1,\unicode {f818}'(1)=c_2\right \}\right )(x)\right \}\right \}\]
✗ Maple : cpu = 0. (sec), leaf count = 0 , result contains DESol
\[ \left \{ y \left ( x \right ) ={\it DESol} \left ( \left \{ {\frac {{\rm d}^{2}}{{\rm d}{x}^{2}}}{\it \_Y} \left ( x \right ) +{\frac {a{\frac {\rm d}{{\rm d}x}}{\it \_Y} \left ( x \right ) }{{x}^{2}}}-{\frac {{\it \_Y} \left ( x \right ) }{x}} \right \} , \left \{ {\it \_Y} \left ( x \right ) \right \} \right ) \right \} \]