\[ ((a+1) x+b) y'(x)-l y(x)+(x-1) x y''(x)=0 \] ✓ Mathematica : cpu = 0.158904 (sec), leaf count = 112
\[\left \{\left \{y(x)\to (-1)^{b+1} c_2 x^{b+1} \, _2F_1\left (\frac {1}{2} \left (a+2 b-\sqrt {a^2+4 l}+2\right ),\frac {1}{2} \left (a+2 b+\sqrt {a^2+4 l}+2\right );b+2;x\right )+c_1 \, _2F_1\left (\frac {1}{2} \left (a-\sqrt {a^2+4 l}\right ),\frac {1}{2} \left (a+\sqrt {a^2+4 l}\right );-b;x\right )\right \}\right \}\]
✓ Maple : cpu = 0.064 (sec), leaf count = 92
\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{\mbox {$_2$F$_1$}({\frac {a}{2}}-{\frac {1}{2}\sqrt {{a}^{2}+4\,l}},{\frac {a}{2}}+{\frac {1}{2}\sqrt {{a}^{2}+4\,l}};\,-b;\,x)}+{\it \_C2}\,{x}^{b+1}{\mbox {$_2$F$_1$}({\frac {a}{2}}-{\frac {1}{2}\sqrt {{a}^{2}+4\,l}}+b+1,{\frac {a}{2}}+{\frac {1}{2}\sqrt {{a}^{2}+4\,l}}+b+1;\,b+2;\,x)} \right \} \]