\[ y''(x)=-\frac {y(x)}{x^4}-\frac {\left (x^2+1\right ) y'(x)}{x^3} \] ✓ Mathematica : cpu = 0.119534 (sec), leaf count = 73
\[\left \{\left \{y(x)\to c_2 G_{1,2}^{2,0}\left (-\frac {1}{2 x^2}|\begin {array}{c} \frac {3}{2} \\ 0,0 \\\end {array}\right )+\frac {c_1 e^{\frac {1}{4 x^2}} \left (\left (2 x^2-1\right ) I_0\left (\frac {1}{4 x^2}\right )+I_1\left (\frac {1}{4 x^2}\right )\right )}{2 x^2}\right \}\right \}\]
✓ Maple : cpu = 0.08 (sec), leaf count = 85
\[ \left \{ y \left ( x \right ) ={\frac {{\it \_C1}}{{x}^{2}}{{\rm e}^{{\frac {1}{4\,{x}^{2}}}}} \left ( 2\,{x}^{2}{{\sl I}_{0}\left (1/4\,{x}^{-2}\right )}+{{\sl I}_{1}\left ({\frac {1}{4\,{x}^{2}}}\right )}-{{\sl I}_{0}\left ({\frac {1}{4\,{x}^{2}}}\right )} \right ) }+{\frac {{\it \_C2}}{{x}^{2}}{{\rm e}^{{\frac {1}{4\,{x}^{2}}}}} \left ( 2\,{{\sl K}_{0}\left (-1/4\,{x}^{-2}\right )}{x}^{2}-{{\sl K}_{0}\left (-{\frac {1}{4\,{x}^{2}}}\right )}+{{\sl K}_{1}\left (-{\frac {1}{4\,{x}^{2}}}\right )} \right ) } \right \} \]