\[ \frac {1}{2} y(x) \left (\left (1-n^2\right ) \wp '(x;\text {g2},\text {g3})-a\right )+\left (1-n^2\right ) y'(x) \wp (x;\text {g2},\text {g3})+y^{(3)}(x)=0 \] ✗ Mathematica : cpu = 0.0320941 (sec), leaf count = 0 , could not solve
DSolve[((-a + (1 - n^2)*WeierstrassPPrime[x, {g2, g3}])*y[x])/2 + (1 - n^2)*WeierstrassP[x, {g2, g3}]*Derivative[1][y][x] + Derivative[3][y][x] == 0, y[x], x]
✗ Maple : cpu = 0. (sec), leaf count = 0 , result contains DESol
\[ \left \{ y \left ( x \right ) ={\it DESol} \left ( \left \{ {\frac {{\rm d}^{3}}{{\rm d}{x}^{3}}}{\it \_Y} \left ( x \right ) + \left ( -{n}^{2}{\it WeierstrassP} \left ( x,{\it g2},{\it g3} \right ) +{\it WeierstrassP} \left ( x,{\it g2},{\it g3} \right ) \right ) {\frac {\rm d}{{\rm d}x}}{\it \_Y} \left ( x \right ) + \left ( -{\frac {{\it WeierstrassPPrime} \left ( x,{\it g2},{\it g3} \right ) {n}^{2}}{2}}+{\frac {{\it WeierstrassPPrime} \left ( x,{\it g2},{\it g3} \right ) }{2}}-{\frac {a}{2}} \right ) {\it \_Y} \left ( x \right ) \right \} , \left \{ {\it \_Y} \left ( x \right ) \right \} \right ) \right \} \]