\[ y''(x)-y(x) h\left (x,\frac {y'(x)}{y(x)}\right )=0 \] ✗ Mathematica : cpu = 10.5225 (sec), leaf count = 0 , could not solve
DSolve[-(h[x, Derivative[1][y][x]/y[x]]*y[x]) + Derivative[2][y][x] == 0, y[x], x]
✓ Maple : cpu = 0.097 (sec), leaf count = 60
\[ \left \{ y \left ( x \right ) ={\it ODESolStruc} \left ( {{\rm e}^{\int \!{\it \_b} \left ( {\it \_a} \right ) \,{\rm d}{\it \_a}+{\it \_C1}}},[ \left \{ {\frac {\rm d}{{\rm d}{\it \_a}}}{\it \_b} \left ( {\it \_a} \right ) =- \left ( {\it \_b} \left ( {\it \_a} \right ) \right ) ^{2}+h \left ( {\it \_a},{\it \_b} \left ( {\it \_a} \right ) \right ) \right \} , \left \{ {\it \_a}=x,{\it \_b} \left ( {\it \_a} \right ) ={\frac {{\frac {\rm d}{{\rm d}x}}y \left ( x \right ) }{y \left ( x \right ) }} \right \} , \left \{ x={\it \_a},y \left ( x \right ) ={{\rm e}^{\int \!{\it \_b} \left ( {\it \_a} \right ) \,{\rm d}{\it \_a}+{\it \_C1}}} \right \} ] \right ) \right \} \]