\[ (y(x)+x) y''(x)+y'(x)^2-y'(x)=0 \] ✓ Mathematica : cpu = 0.898577 (sec), leaf count = 227
\[\left \{\left \{y(x)\to -\frac {e^{-2 c_1} \sqrt {e^{2 c_1} \left (4 e^{c_1} \left (x-c_2\right )+1\right )}}{\sqrt {2}}+\frac {e^{-c_1}}{2}-2 c_2+x\right \},\left \{y(x)\to \frac {e^{-2 c_1} \sqrt {e^{2 c_1} \left (4 e^{c_1} \left (x-c_2\right )+1\right )}}{\sqrt {2}}+\frac {e^{-c_1}}{2}-2 c_2+x\right \},\left \{y(x)\to -\frac {e^{-2 c_1} \sqrt {e^{2 c_1} \left (4 e^{c_1} \left (c_2+x\right )+1\right )}}{\sqrt {2}}+\frac {e^{-c_1}}{2}+2 c_2+x\right \},\left \{y(x)\to \frac {e^{-2 c_1} \sqrt {e^{2 c_1} \left (4 e^{c_1} \left (c_2+x\right )+1\right )}}{\sqrt {2}}+\frac {e^{-c_1}}{2}+2 c_2+x\right \}\right \}\]
✓ Maple : cpu = 0.129 (sec), leaf count = 16
\[ \left \{ y \left ( x \right ) =\sqrt {{\it \_C1}+2\,x}{\it \_C2}+{\it \_C1}+x \right \} \]