2.1937   ODE No. 1937

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

{x(t)=x(t)y(t)2+x(t)+y(t),y(t)=x(t)2y(t)x(t)y(t),z(t)=y(t)2x(t)2} Mathematica : cpu = 0.290524 (sec), leaf count = 0 , could not solve

DSolve[{Derivative[1][x][t] == x[t] + y[t] - x[t]*y[t]^2, Derivative[1][y][t] == -x[t] - y[t] + x[t]^2*y[t], Derivative[1][z][t] == -x[t]^2 + y[t]^2}, {x[t], y[t], z[t]}, t]

Maple : cpu = 0.799 (sec), leaf count = 240

{[{x(t)=0},{y(t)=0},{z(t)=_C1}],[{x(t)=ODESolStruc(_a,[{(dd_a_b(_a))_b(_a)+12_a2(4_b(_a)_a4+4_a52_a(_b(_a))2+4_a2_b(_a)3_a3+(4_a24_a_b(_a)+1)(_a3+_a_b(_a))2+_b(_a)_a)=0},{_a=x(t),_b(_a)=ddtx(t)},{t=(_b(_a))1d_a+_C2,x(t)=_a}])},{y(t)=1(x(t))3+x(t)ddtx(t)((d2dt2x(t))x(t)+2(x(t)ddtx(t))((x(t))31/2x(t)+1/2ddtx(t)))},{z(t)=(x(t))52(x(t))2ddtx(t)+2(x(t))3+d2dt2x(t)(x(t))3+x(t)ddtx(t)dt+_C1}]}