[next] [prev] [prev-tail] [tail] [up]
{x′(t)=−x(t)y(t)2+x(t)+y(t),y′(t)=x(t)2y(t)−x(t)−y(t),z′(t)=y(t)2−x(t)2} ✗ Mathematica : cpu = 0.290524 (sec), leaf count = 0 , could not solve
DSolve[{Derivative[1][x][t] == x[t] + y[t] - x[t]*y[t]^2, Derivative[1][y][t] == -x[t] - y[t] + x[t]^2*y[t], Derivative[1][z][t] == -x[t]^2 + y[t]^2}, {x[t], y[t], z[t]}, t]
✓ Maple : cpu = 0.799 (sec), leaf count = 240
{[{x(t)=0},{y(t)=0},{z(t)=_C1}],[{x(t)=ODESolStruc(_a,[{(dd_a_b(_a))_b(_a)+12_a2(−4_b(_a)_a4+4_a5−2_a(_b(_a))2+4_a2_b(_a)−3_a3+(4_a2−4_a_b(_a)+1)(_a3+_a−_b(_a))2+_b(_a)−_a)=0},{_a=x(t),_b(_a)=ddtx(t)},{t=∫(_b(_a))−1d_a+_C2,x(t)=_a}])},{y(t)=1(x(t))3+x(t)−ddtx(t)((d2dt2x(t))x(t)+2(x(t)−ddtx(t))((x(t))3−1/2x(t)+1/2ddtx(t)))},{z(t)=∫−(x(t))5−2(x(t))2ddtx(t)+2(x(t))3+d2dt2x(t)(x(t))3+x(t)−ddtx(t)dt+_C1}]}
[next] [prev] [prev-tail] [front] [up]