\[ x \left (x^4+x y(x)-1\right ) y'(x)-y(x) \left (-x^4+x y(x)-1\right )=0 \] ✓ Mathematica : cpu = 0.424211 (sec), leaf count = 39
\[\text {Solve}\left [\frac {x \left (c_1-2 \log \left (\frac {1}{1-x y(x)}\right )-2\right )}{y(x)}+2 x^2+\frac {y(x)}{x}=0,y(x)\right ]\]
✓ Maple : cpu = 0.122 (sec), leaf count = 98
\[ \left \{ y \left ( x \right ) ={\frac {-{\it \_C1}+{{\rm e}^{{\it RootOf} \left ( -2\,{\it \_Z}\,{x}^{4} \left ( {{\rm e}^{{\it \_Z}}} \right ) ^{2}+2\,{x}^{4} \left ( {{\rm e}^{{\it \_Z}}} \right ) ^{2}-2\,{{\rm e}^{{\it \_Z}}}{\it \_C1}\,{x}^{4}+ \left ( {{\rm e}^{{\it \_Z}}} \right ) ^{2}-2\,{{\rm e}^{{\it \_Z}}}{\it \_C1}+{{\it \_C1}}^{2} \right ) }}}{x{{\rm e}^{{\it RootOf} \left ( -2\,{\it \_Z}\,{x}^{4} \left ( {{\rm e}^{{\it \_Z}}} \right ) ^{2}+2\,{x}^{4} \left ( {{\rm e}^{{\it \_Z}}} \right ) ^{2}-2\,{{\rm e}^{{\it \_Z}}}{\it \_C1}\,{x}^{4}+ \left ( {{\rm e}^{{\it \_Z}}} \right ) ^{2}-2\,{{\rm e}^{{\it \_Z}}}{\it \_C1}+{{\it \_C1}}^{2} \right ) }}}} \right \} \]