\[ (2 y(x)-3 x+1)^2 y'(x)-(3 y(x)-2 x-4)^2=0 \] ✓ Mathematica : cpu = 0.366634 (sec), leaf count = 3501
\[\left \{\left \{y(x)\to \text {Root}\left [1024 x^{10}+38400 x^9+506880 x^8+2246400 x^7-5261760 x^6-50349600 x^5+71033760 x^4+409406400 x^3-1247114880 x^2+295245 c_1^5 x+1275458400 x+1024 \text {$\#$1}^{10}+(19200-21760 x) \text {$\#$1}^9+\left (190080 x^2-288000 x+74880\right ) \text {$\#$1}^8+\left (-873120 x^3+1504800 x^2-84960 x-496800\right ) \text {$\#$1}^7+\left (2235540 x^4-2559600 x^3-6300360 x^2+9795600 x-2953260\right ) \text {$\#$1}^6+177147 c_1^5+\left (-3122577 x^5-3208725 x^4+35619030 x^3-43079850 x^2+6246315 x+7174575\right ) \text {$\#$1}^5+\left (2235540 x^6+14206950 x^5-55677150 x^4-2902500 x^3+155568600 x^2-154390050 x+39869010\right ) \text {$\#$1}^4+\left (-873120 x^7-11592000 x^6-3051720 x^5+219051000 x^4-473785200 x^3+276922800 x^2+85118040 x-90541800\right ) \text {$\#$1}^3+\left (190080 x^8+3988800 x^7+17972640 x^6-70534800 x^5-266036400 x^4+1264183200 x^3-1778293440 x^2+1015642800 x-184232880\right ) \text {$\#$1}^2+\left (-21760 x^9-633600 x^8-5592960 x^7-4838400 x^6+114715440 x^5+45586800 x^4-1246764960 x^3+2598156000 x^2-2139935760 x-295245 c_1^5+637729200\right ) \text {$\#$1}-459165024\& ,1\right ]\right \},\left \{y(x)\to \text {Root}\left [1024 x^{10}+38400 x^9+506880 x^8+2246400 x^7-5261760 x^6-50349600 x^5+71033760 x^4+409406400 x^3-1247114880 x^2+295245 c_1^5 x+1275458400 x+1024 \text {$\#$1}^{10}+(19200-21760 x) \text {$\#$1}^9+\left (190080 x^2-288000 x+74880\right ) \text {$\#$1}^8+\left (-873120 x^3+1504800 x^2-84960 x-496800\right ) \text {$\#$1}^7+\left (2235540 x^4-2559600 x^3-6300360 x^2+9795600 x-2953260\right ) \text {$\#$1}^6+177147 c_1^5+\left (-3122577 x^5-3208725 x^4+35619030 x^3-43079850 x^2+6246315 x+7174575\right ) \text {$\#$1}^5+\left (2235540 x^6+14206950 x^5-55677150 x^4-2902500 x^3+155568600 x^2-154390050 x+39869010\right ) \text {$\#$1}^4+\left (-873120 x^7-11592000 x^6-3051720 x^5+219051000 x^4-473785200 x^3+276922800 x^2+85118040 x-90541800\right ) \text {$\#$1}^3+\left (190080 x^8+3988800 x^7+17972640 x^6-70534800 x^5-266036400 x^4+1264183200 x^3-1778293440 x^2+1015642800 x-184232880\right ) \text {$\#$1}^2+\left (-21760 x^9-633600 x^8-5592960 x^7-4838400 x^6+114715440 x^5+45586800 x^4-1246764960 x^3+2598156000 x^2-2139935760 x-295245 c_1^5+637729200\right ) \text {$\#$1}-459165024\& ,2\right ]\right \},\left \{y(x)\to \text {Root}\left [1024 x^{10}+38400 x^9+506880 x^8+2246400 x^7-5261760 x^6-50349600 x^5+71033760 x^4+409406400 x^3-1247114880 x^2+295245 c_1^5 x+1275458400 x+1024 \text {$\#$1}^{10}+(19200-21760 x) \text {$\#$1}^9+\left (190080 x^2-288000 x+74880\right ) \text {$\#$1}^8+\left (-873120 x^3+1504800 x^2-84960 x-496800\right ) \text {$\#$1}^7+\left (2235540 x^4-2559600 x^3-6300360 x^2+9795600 x-2953260\right ) \text {$\#$1}^6+177147 c_1^5+\left (-3122577 x^5-3208725 x^4+35619030 x^3-43079850 x^2+6246315 x+7174575\right ) \text {$\#$1}^5+\left (2235540 x^6+14206950 x^5-55677150 x^4-2902500 x^3+155568600 x^2-154390050 x+39869010\right ) \text {$\#$1}^4+\left (-873120 x^7-11592000 x^6-3051720 x^5+219051000 x^4-473785200 x^3+276922800 x^2+85118040 x-90541800\right ) \text {$\#$1}^3+\left (190080 x^8+3988800 x^7+17972640 x^6-70534800 x^5-266036400 x^4+1264183200 x^3-1778293440 x^2+1015642800 x-184232880\right ) \text {$\#$1}^2+\left (-21760 x^9-633600 x^8-5592960 x^7-4838400 x^6+114715440 x^5+45586800 x^4-1246764960 x^3+2598156000 x^2-2139935760 x-295245 c_1^5+637729200\right ) \text {$\#$1}-459165024\& ,3\right ]\right \},\left \{y(x)\to \text {Root}\left [1024 x^{10}+38400 x^9+506880 x^8+2246400 x^7-5261760 x^6-50349600 x^5+71033760 x^4+409406400 x^3-1247114880 x^2+295245 c_1^5 x+1275458400 x+1024 \text {$\#$1}^{10}+(19200-21760 x) \text {$\#$1}^9+\left (190080 x^2-288000 x+74880\right ) \text {$\#$1}^8+\left (-873120 x^3+1504800 x^2-84960 x-496800\right ) \text {$\#$1}^7+\left (2235540 x^4-2559600 x^3-6300360 x^2+9795600 x-2953260\right ) \text {$\#$1}^6+177147 c_1^5+\left (-3122577 x^5-3208725 x^4+35619030 x^3-43079850 x^2+6246315 x+7174575\right ) \text {$\#$1}^5+\left (2235540 x^6+14206950 x^5-55677150 x^4-2902500 x^3+155568600 x^2-154390050 x+39869010\right ) \text {$\#$1}^4+\left (-873120 x^7-11592000 x^6-3051720 x^5+219051000 x^4-473785200 x^3+276922800 x^2+85118040 x-90541800\right ) \text {$\#$1}^3+\left (190080 x^8+3988800 x^7+17972640 x^6-70534800 x^5-266036400 x^4+1264183200 x^3-1778293440 x^2+1015642800 x-184232880\right ) \text {$\#$1}^2+\left (-21760 x^9-633600 x^8-5592960 x^7-4838400 x^6+114715440 x^5+45586800 x^4-1246764960 x^3+2598156000 x^2-2139935760 x-295245 c_1^5+637729200\right ) \text {$\#$1}-459165024\& ,4\right ]\right \},\left \{y(x)\to \text {Root}\left [1024 x^{10}+38400 x^9+506880 x^8+2246400 x^7-5261760 x^6-50349600 x^5+71033760 x^4+409406400 x^3-1247114880 x^2+295245 c_1^5 x+1275458400 x+1024 \text {$\#$1}^{10}+(19200-21760 x) \text {$\#$1}^9+\left (190080 x^2-288000 x+74880\right ) \text {$\#$1}^8+\left (-873120 x^3+1504800 x^2-84960 x-496800\right ) \text {$\#$1}^7+\left (2235540 x^4-2559600 x^3-6300360 x^2+9795600 x-2953260\right ) \text {$\#$1}^6+177147 c_1^5+\left (-3122577 x^5-3208725 x^4+35619030 x^3-43079850 x^2+6246315 x+7174575\right ) \text {$\#$1}^5+\left (2235540 x^6+14206950 x^5-55677150 x^4-2902500 x^3+155568600 x^2-154390050 x+39869010\right ) \text {$\#$1}^4+\left (-873120 x^7-11592000 x^6-3051720 x^5+219051000 x^4-473785200 x^3+276922800 x^2+85118040 x-90541800\right ) \text {$\#$1}^3+\left (190080 x^8+3988800 x^7+17972640 x^6-70534800 x^5-266036400 x^4+1264183200 x^3-1778293440 x^2+1015642800 x-184232880\right ) \text {$\#$1}^2+\left (-21760 x^9-633600 x^8-5592960 x^7-4838400 x^6+114715440 x^5+45586800 x^4-1246764960 x^3+2598156000 x^2-2139935760 x-295245 c_1^5+637729200\right ) \text {$\#$1}-459165024\& ,5\right ]\right \},\left \{y(x)\to \text {Root}\left [1024 x^{10}+38400 x^9+506880 x^8+2246400 x^7-5261760 x^6-50349600 x^5+71033760 x^4+409406400 x^3-1247114880 x^2+295245 c_1^5 x+1275458400 x+1024 \text {$\#$1}^{10}+(19200-21760 x) \text {$\#$1}^9+\left (190080 x^2-288000 x+74880\right ) \text {$\#$1}^8+\left (-873120 x^3+1504800 x^2-84960 x-496800\right ) \text {$\#$1}^7+\left (2235540 x^4-2559600 x^3-6300360 x^2+9795600 x-2953260\right ) \text {$\#$1}^6+177147 c_1^5+\left (-3122577 x^5-3208725 x^4+35619030 x^3-43079850 x^2+6246315 x+7174575\right ) \text {$\#$1}^5+\left (2235540 x^6+14206950 x^5-55677150 x^4-2902500 x^3+155568600 x^2-154390050 x+39869010\right ) \text {$\#$1}^4+\left (-873120 x^7-11592000 x^6-3051720 x^5+219051000 x^4-473785200 x^3+276922800 x^2+85118040 x-90541800\right ) \text {$\#$1}^3+\left (190080 x^8+3988800 x^7+17972640 x^6-70534800 x^5-266036400 x^4+1264183200 x^3-1778293440 x^2+1015642800 x-184232880\right ) \text {$\#$1}^2+\left (-21760 x^9-633600 x^8-5592960 x^7-4838400 x^6+114715440 x^5+45586800 x^4-1246764960 x^3+2598156000 x^2-2139935760 x-295245 c_1^5+637729200\right ) \text {$\#$1}-459165024\& ,6\right ]\right \},\left \{y(x)\to \text {Root}\left [1024 x^{10}+38400 x^9+506880 x^8+2246400 x^7-5261760 x^6-50349600 x^5+71033760 x^4+409406400 x^3-1247114880 x^2+295245 c_1^5 x+1275458400 x+1024 \text {$\#$1}^{10}+(19200-21760 x) \text {$\#$1}^9+\left (190080 x^2-288000 x+74880\right ) \text {$\#$1}^8+\left (-873120 x^3+1504800 x^2-84960 x-496800\right ) \text {$\#$1}^7+\left (2235540 x^4-2559600 x^3-6300360 x^2+9795600 x-2953260\right ) \text {$\#$1}^6+177147 c_1^5+\left (-3122577 x^5-3208725 x^4+35619030 x^3-43079850 x^2+6246315 x+7174575\right ) \text {$\#$1}^5+\left (2235540 x^6+14206950 x^5-55677150 x^4-2902500 x^3+155568600 x^2-154390050 x+39869010\right ) \text {$\#$1}^4+\left (-873120 x^7-11592000 x^6-3051720 x^5+219051000 x^4-473785200 x^3+276922800 x^2+85118040 x-90541800\right ) \text {$\#$1}^3+\left (190080 x^8+3988800 x^7+17972640 x^6-70534800 x^5-266036400 x^4+1264183200 x^3-1778293440 x^2+1015642800 x-184232880\right ) \text {$\#$1}^2+\left (-21760 x^9-633600 x^8-5592960 x^7-4838400 x^6+114715440 x^5+45586800 x^4-1246764960 x^3+2598156000 x^2-2139935760 x-295245 c_1^5+637729200\right ) \text {$\#$1}-459165024\& ,7\right ]\right \},\left \{y(x)\to \text {Root}\left [1024 x^{10}+38400 x^9+506880 x^8+2246400 x^7-5261760 x^6-50349600 x^5+71033760 x^4+409406400 x^3-1247114880 x^2+295245 c_1^5 x+1275458400 x+1024 \text {$\#$1}^{10}+(19200-21760 x) \text {$\#$1}^9+\left (190080 x^2-288000 x+74880\right ) \text {$\#$1}^8+\left (-873120 x^3+1504800 x^2-84960 x-496800\right ) \text {$\#$1}^7+\left (2235540 x^4-2559600 x^3-6300360 x^2+9795600 x-2953260\right ) \text {$\#$1}^6+177147 c_1^5+\left (-3122577 x^5-3208725 x^4+35619030 x^3-43079850 x^2+6246315 x+7174575\right ) \text {$\#$1}^5+\left (2235540 x^6+14206950 x^5-55677150 x^4-2902500 x^3+155568600 x^2-154390050 x+39869010\right ) \text {$\#$1}^4+\left (-873120 x^7-11592000 x^6-3051720 x^5+219051000 x^4-473785200 x^3+276922800 x^2+85118040 x-90541800\right ) \text {$\#$1}^3+\left (190080 x^8+3988800 x^7+17972640 x^6-70534800 x^5-266036400 x^4+1264183200 x^3-1778293440 x^2+1015642800 x-184232880\right ) \text {$\#$1}^2+\left (-21760 x^9-633600 x^8-5592960 x^7-4838400 x^6+114715440 x^5+45586800 x^4-1246764960 x^3+2598156000 x^2-2139935760 x-295245 c_1^5+637729200\right ) \text {$\#$1}-459165024\& ,8\right ]\right \},\left \{y(x)\to \text {Root}\left [1024 x^{10}+38400 x^9+506880 x^8+2246400 x^7-5261760 x^6-50349600 x^5+71033760 x^4+409406400 x^3-1247114880 x^2+295245 c_1^5 x+1275458400 x+1024 \text {$\#$1}^{10}+(19200-21760 x) \text {$\#$1}^9+\left (190080 x^2-288000 x+74880\right ) \text {$\#$1}^8+\left (-873120 x^3+1504800 x^2-84960 x-496800\right ) \text {$\#$1}^7+\left (2235540 x^4-2559600 x^3-6300360 x^2+9795600 x-2953260\right ) \text {$\#$1}^6+177147 c_1^5+\left (-3122577 x^5-3208725 x^4+35619030 x^3-43079850 x^2+6246315 x+7174575\right ) \text {$\#$1}^5+\left (2235540 x^6+14206950 x^5-55677150 x^4-2902500 x^3+155568600 x^2-154390050 x+39869010\right ) \text {$\#$1}^4+\left (-873120 x^7-11592000 x^6-3051720 x^5+219051000 x^4-473785200 x^3+276922800 x^2+85118040 x-90541800\right ) \text {$\#$1}^3+\left (190080 x^8+3988800 x^7+17972640 x^6-70534800 x^5-266036400 x^4+1264183200 x^3-1778293440 x^2+1015642800 x-184232880\right ) \text {$\#$1}^2+\left (-21760 x^9-633600 x^8-5592960 x^7-4838400 x^6+114715440 x^5+45586800 x^4-1246764960 x^3+2598156000 x^2-2139935760 x-295245 c_1^5+637729200\right ) \text {$\#$1}-459165024\& ,9\right ]\right \},\left \{y(x)\to \text {Root}\left [1024 x^{10}+38400 x^9+506880 x^8+2246400 x^7-5261760 x^6-50349600 x^5+71033760 x^4+409406400 x^3-1247114880 x^2+295245 c_1^5 x+1275458400 x+1024 \text {$\#$1}^{10}+(19200-21760 x) \text {$\#$1}^9+\left (190080 x^2-288000 x+74880\right ) \text {$\#$1}^8+\left (-873120 x^3+1504800 x^2-84960 x-496800\right ) \text {$\#$1}^7+\left (2235540 x^4-2559600 x^3-6300360 x^2+9795600 x-2953260\right ) \text {$\#$1}^6+177147 c_1^5+\left (-3122577 x^5-3208725 x^4+35619030 x^3-43079850 x^2+6246315 x+7174575\right ) \text {$\#$1}^5+\left (2235540 x^6+14206950 x^5-55677150 x^4-2902500 x^3+155568600 x^2-154390050 x+39869010\right ) \text {$\#$1}^4+\left (-873120 x^7-11592000 x^6-3051720 x^5+219051000 x^4-473785200 x^3+276922800 x^2+85118040 x-90541800\right ) \text {$\#$1}^3+\left (190080 x^8+3988800 x^7+17972640 x^6-70534800 x^5-266036400 x^4+1264183200 x^3-1778293440 x^2+1015642800 x-184232880\right ) \text {$\#$1}^2+\left (-21760 x^9-633600 x^8-5592960 x^7-4838400 x^6+114715440 x^5+45586800 x^4-1246764960 x^3+2598156000 x^2-2139935760 x-295245 c_1^5+637729200\right ) \text {$\#$1}-459165024\& ,10\right ]\right \}\right \}\]
✓ Maple : cpu = 1.233 (sec), leaf count = 1337
\[ \left \{ y \left ( x \right ) ={\frac { \left ( 5\,x+3 \right ) \left ( {\it RootOf} \left ( \left ( 115330078125\,{\it \_C1}\,{x}^{9}-2283535546875\,{\it \_C1}\,{x}^{8}+20095112812500\,{\it \_C1}\,{x}^{7}-103154912437500\,{\it \_C1}\,{x}^{6}+340411211043750\,{\it \_C1}\,{x}^{5}-748904664296250\,{\it \_C1}\,{x}^{4}+1098393507634500\,{x}^{3}{\it \_C1}-1035628164341100\,{x}^{2}{\it \_C1}+569595490387605\,{\it \_C1}\,x-139234453205859\,{\it \_C1} \right ) {{\it \_Z}}^{90}+ \left ( -576650390625\,{\it \_C1}\,{x}^{9}+11417677734375\,{\it \_C1}\,{x}^{8}-100475564062500\,{\it \_C1}\,{x}^{7}+515774562187500\,{\it \_C1}\,{x}^{6}-1702056055218750\,{\it \_C1}\,{x}^{5}+3744523321481250\,{\it \_C1}\,{x}^{4}-5491967538172500\,{x}^{3}{\it \_C1}+5178140821705500\,{x}^{2}{\it \_C1}-2847977451938025\,{\it \_C1}\,x+696172266029295\,{\it \_C1}+1 \right ) {{\it \_Z}}^{81}+ \left ( 897011718750\,{\it \_C1}\,{x}^{9}-17760832031250\,{\it \_C1}\,{x}^{8}+156295321875000\,{\it \_C1}\,{x}^{7}-802315985625000\,{\it \_C1}\,{x}^{6}+2647642752562500\,{\it \_C1}\,{x}^{5}-5824814055637500\,{\it \_C1}\,{x}^{4}+8543060614935000\,{x}^{3}{\it \_C1}-8054885722653000\,{x}^{2}{\it \_C1}+4430187147459150\,{\it \_C1}\,x-1082934636045570\,{\it \_C1} \right ) {{\it \_Z}}^{72}+ \left ( -128144531250\,{\it \_C1}\,{x}^{9}+2537261718750\,{\it \_C1}\,{x}^{8}-22327903125000\,{\it \_C1}\,{x}^{7}+114616569375000\,{\it \_C1}\,{x}^{6}-378234678937500\,{\it \_C1}\,{x}^{5}+832116293662500\,{\it \_C1}\,{x}^{4}-1220437230705000\,{x}^{3}{\it \_C1}+1150697960379000\,{x}^{2}{\it \_C1}-632883878208450\,{\it \_C1}\,x+154704948006510\,{\it \_C1} \right ) {{\it \_Z}}^{63}+ \left ( -733271484375\,{\it \_C1}\,{x}^{9}+14518775390625\,{\it \_C1}\,{x}^{8}-127765223437500\,{\it \_C1}\,{x}^{7}+655861480312500\,{\it \_C1}\,{x}^{6}-2164342885031250\,{\it \_C1}\,{x}^{5}+4761554347068750\,{\it \_C1}\,{x}^{4}-6983613042367500\,{x}^{3}{\it \_C1}+6584549439946500\,{x}^{2}{\it \_C1}-3621502191970575\,{\it \_C1}\,x+885256091370585\,{\it \_C1} \right ) {{\it \_Z}}^{54}+ \left ( 226388671875\,{\it \_C1}\,{x}^{9}-4482495703125\,{\it \_C1}\,{x}^{8}+39445962187500\,{\it \_C1}\,{x}^{7}-202489272562500\,{\it \_C1}\,{x}^{6}+668214599456250\,{\it \_C1}\,{x}^{5}-1470072118803750\,{\it \_C1}\,{x}^{4}+2156105774245500\,{x}^{3}{\it \_C1}-2032899730002900\,{x}^{2}{\it \_C1}+1118094851501595\,{\it \_C1}\,x-273312074811501\,{\it \_C1} \right ) {{\it \_Z}}^{45}+ \left ( 325898437500\,{\it \_C1}\,{x}^{9}-6452789062500\,{\it \_C1}\,{x}^{8}+56784543750000\,{\it \_C1}\,{x}^{7}-291493991250000\,{\it \_C1}\,{x}^{6}+961930171125000\,{\it \_C1}\,{x}^{5}-2116246376475000\,{\it \_C1}\,{x}^{4}+3103828018830000\,{x}^{3}{\it \_C1}-2926466417754000\,{x}^{2}{\it \_C1}+1609556529764700\,{\it \_C1}\,x-393447151720260\,{\it \_C1} \right ) {{\it \_Z}}^{36}+ \left ( -25312500000\,{\it \_C1}\,{x}^{9}+501187500000\,{\it \_C1}\,{x}^{8}-4410450000000\,{\it \_C1}\,{x}^{7}+22640310000000\,{\it \_C1}\,{x}^{6}-74713023000000\,{\it \_C1}\,{x}^{5}+164368650600000\,{\it \_C1}\,{x}^{4}-241074020880000\,{x}^{3}{\it \_C1}+227298362544000\,{x}^{2}{\it \_C1}-125014099399200\,{\it \_C1}\,x+30559002075360\,{\it \_C1} \right ) {{\it \_Z}}^{27}+ \left ( -78750000000\,{\it \_C1}\,{x}^{9}+1559250000000\,{\it \_C1}\,{x}^{8}-13721400000000\,{\it \_C1}\,{x}^{7}+70436520000000\,{\it \_C1}\,{x}^{6}-232440516000000\,{\it \_C1}\,{x}^{5}+511369135200000\,{\it \_C1}\,{x}^{4}-750008064960000\,{x}^{3}{\it \_C1}+707150461248000\,{x}^{2}{\it \_C1}-388932753686400\,{\it \_C1}\,x+95072450901120\,{\it \_C1} \right ) {{\it \_Z}}^{18}+ \left ( -22500000000\,{\it \_C1}\,{x}^{9}+445500000000\,{\it \_C1}\,{x}^{8}-3920400000000\,{\it \_C1}\,{x}^{7}+20124720000000\,{\it \_C1}\,{x}^{6}-66411576000000\,{\it \_C1}\,{x}^{5}+146105467200000\,{\it \_C1}\,{x}^{4}-214288018560000\,{x}^{3}{\it \_C1}+202042988928000\,{x}^{2}{\it \_C1}-111123643910400\,{\it \_C1}\,x+27163557400320\,{\it \_C1} \right ) {{\it \_Z}}^{9}-2000000000\,{\it \_C1}\,{x}^{9}+39600000000\,{\it \_C1}\,{x}^{8}-348480000000\,{\it \_C1}\,{x}^{7}+1788864000000\,{\it \_C1}\,{x}^{6}-5903251200000\,{\it \_C1}\,{x}^{5}+12987152640000\,{\it \_C1}\,{x}^{4}-19047823872000\,{x}^{3}{\it \_C1}+17959376793600\,{x}^{2}{\it \_C1}-9877657236480\,{\it \_C1}\,x+2414538435584\,{\it \_C1} \right ) \right ) ^{9}-5\,x+11}{5\, \left ( {\it RootOf} \left ( \left ( 115330078125\,{\it \_C1}\,{x}^{9}-2283535546875\,{\it \_C1}\,{x}^{8}+20095112812500\,{\it \_C1}\,{x}^{7}-103154912437500\,{\it \_C1}\,{x}^{6}+340411211043750\,{\it \_C1}\,{x}^{5}-748904664296250\,{\it \_C1}\,{x}^{4}+1098393507634500\,{x}^{3}{\it \_C1}-1035628164341100\,{x}^{2}{\it \_C1}+569595490387605\,{\it \_C1}\,x-139234453205859\,{\it \_C1} \right ) {{\it \_Z}}^{90}+ \left ( -576650390625\,{\it \_C1}\,{x}^{9}+11417677734375\,{\it \_C1}\,{x}^{8}-100475564062500\,{\it \_C1}\,{x}^{7}+515774562187500\,{\it \_C1}\,{x}^{6}-1702056055218750\,{\it \_C1}\,{x}^{5}+3744523321481250\,{\it \_C1}\,{x}^{4}-5491967538172500\,{x}^{3}{\it \_C1}+5178140821705500\,{x}^{2}{\it \_C1}-2847977451938025\,{\it \_C1}\,x+696172266029295\,{\it \_C1}+1 \right ) {{\it \_Z}}^{81}+ \left ( 897011718750\,{\it \_C1}\,{x}^{9}-17760832031250\,{\it \_C1}\,{x}^{8}+156295321875000\,{\it \_C1}\,{x}^{7}-802315985625000\,{\it \_C1}\,{x}^{6}+2647642752562500\,{\it \_C1}\,{x}^{5}-5824814055637500\,{\it \_C1}\,{x}^{4}+8543060614935000\,{x}^{3}{\it \_C1}-8054885722653000\,{x}^{2}{\it \_C1}+4430187147459150\,{\it \_C1}\,x-1082934636045570\,{\it \_C1} \right ) {{\it \_Z}}^{72}+ \left ( -128144531250\,{\it \_C1}\,{x}^{9}+2537261718750\,{\it \_C1}\,{x}^{8}-22327903125000\,{\it \_C1}\,{x}^{7}+114616569375000\,{\it \_C1}\,{x}^{6}-378234678937500\,{\it \_C1}\,{x}^{5}+832116293662500\,{\it \_C1}\,{x}^{4}-1220437230705000\,{x}^{3}{\it \_C1}+1150697960379000\,{x}^{2}{\it \_C1}-632883878208450\,{\it \_C1}\,x+154704948006510\,{\it \_C1} \right ) {{\it \_Z}}^{63}+ \left ( -733271484375\,{\it \_C1}\,{x}^{9}+14518775390625\,{\it \_C1}\,{x}^{8}-127765223437500\,{\it \_C1}\,{x}^{7}+655861480312500\,{\it \_C1}\,{x}^{6}-2164342885031250\,{\it \_C1}\,{x}^{5}+4761554347068750\,{\it \_C1}\,{x}^{4}-6983613042367500\,{x}^{3}{\it \_C1}+6584549439946500\,{x}^{2}{\it \_C1}-3621502191970575\,{\it \_C1}\,x+885256091370585\,{\it \_C1} \right ) {{\it \_Z}}^{54}+ \left ( 226388671875\,{\it \_C1}\,{x}^{9}-4482495703125\,{\it \_C1}\,{x}^{8}+39445962187500\,{\it \_C1}\,{x}^{7}-202489272562500\,{\it \_C1}\,{x}^{6}+668214599456250\,{\it \_C1}\,{x}^{5}-1470072118803750\,{\it \_C1}\,{x}^{4}+2156105774245500\,{x}^{3}{\it \_C1}-2032899730002900\,{x}^{2}{\it \_C1}+1118094851501595\,{\it \_C1}\,x-273312074811501\,{\it \_C1} \right ) {{\it \_Z}}^{45}+ \left ( 325898437500\,{\it \_C1}\,{x}^{9}-6452789062500\,{\it \_C1}\,{x}^{8}+56784543750000\,{\it \_C1}\,{x}^{7}-291493991250000\,{\it \_C1}\,{x}^{6}+961930171125000\,{\it \_C1}\,{x}^{5}-2116246376475000\,{\it \_C1}\,{x}^{4}+3103828018830000\,{x}^{3}{\it \_C1}-2926466417754000\,{x}^{2}{\it \_C1}+1609556529764700\,{\it \_C1}\,x-393447151720260\,{\it \_C1} \right ) {{\it \_Z}}^{36}+ \left ( -25312500000\,{\it \_C1}\,{x}^{9}+501187500000\,{\it \_C1}\,{x}^{8}-4410450000000\,{\it \_C1}\,{x}^{7}+22640310000000\,{\it \_C1}\,{x}^{6}-74713023000000\,{\it \_C1}\,{x}^{5}+164368650600000\,{\it \_C1}\,{x}^{4}-241074020880000\,{x}^{3}{\it \_C1}+227298362544000\,{x}^{2}{\it \_C1}-125014099399200\,{\it \_C1}\,x+30559002075360\,{\it \_C1} \right ) {{\it \_Z}}^{27}+ \left ( -78750000000\,{\it \_C1}\,{x}^{9}+1559250000000\,{\it \_C1}\,{x}^{8}-13721400000000\,{\it \_C1}\,{x}^{7}+70436520000000\,{\it \_C1}\,{x}^{6}-232440516000000\,{\it \_C1}\,{x}^{5}+511369135200000\,{\it \_C1}\,{x}^{4}-750008064960000\,{x}^{3}{\it \_C1}+707150461248000\,{x}^{2}{\it \_C1}-388932753686400\,{\it \_C1}\,x+95072450901120\,{\it \_C1} \right ) {{\it \_Z}}^{18}+ \left ( -22500000000\,{\it \_C1}\,{x}^{9}+445500000000\,{\it \_C1}\,{x}^{8}-3920400000000\,{\it \_C1}\,{x}^{7}+20124720000000\,{\it \_C1}\,{x}^{6}-66411576000000\,{\it \_C1}\,{x}^{5}+146105467200000\,{\it \_C1}\,{x}^{4}-214288018560000\,{x}^{3}{\it \_C1}+202042988928000\,{x}^{2}{\it \_C1}-111123643910400\,{\it \_C1}\,x+27163557400320\,{\it \_C1} \right ) {{\it \_Z}}^{9}-2000000000\,{\it \_C1}\,{x}^{9}+39600000000\,{\it \_C1}\,{x}^{8}-348480000000\,{\it \_C1}\,{x}^{7}+1788864000000\,{\it \_C1}\,{x}^{6}-5903251200000\,{\it \_C1}\,{x}^{5}+12987152640000\,{\it \_C1}\,{x}^{4}-19047823872000\,{x}^{3}{\it \_C1}+17959376793600\,{x}^{2}{\it \_C1}-9877657236480\,{\it \_C1}\,x+2414538435584\,{\it \_C1} \right ) \right ) ^{9}}} \right \} \]