2.29   ODE No. 29

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

y(x)xy(x)23xy(x)=0 Mathematica : cpu = 0.0239502 (sec), leaf count = 39

{{y(x)3e3c1+3x22e3c1+3x221}}

Maple : cpu = 0.015 (sec), leaf count = 19

{y(x)=3(1+3e3/2x2_C1)1}

Hand solution

yxy23xy=0y=3xy+xy2(1)=P(x)+Q(x)y+R(x)y2

This is Bernoulli first order non-linear ODE since P(x)=0. To solve Bernoulli we always start by dividing by y2yy2=3xy+x Then we let u=1y, hence u=yy2, therefore the above becomesu=3xu+xu+3ux=x

Integrating factor is e3xdx=e3x22, hence d(e3x22u)=xe3x22 Integrating both sides givese3x22u=xe3x22dx+C=13e3x22+C

Hence from aboveu=e3x22(13e3x22+C)

And since y=1u theny=e3x22C13e3x22 Verification

eq:=diff(y(x),x)-x*y(x)^2-3*x*y(x) = 0; 
sol:=exp(3*x^2/2)/(_C1- 1/3*exp(3*x^2/2)); 
odetest(y(x)=sol,eq); 
0