[next] [prev] [prev-tail] [tail] [up]
ay(x)−bsin(cx)+y′(x)=0 ✓ Mathematica : cpu = 0.0497953 (sec), leaf count = 40
{{y(x)→b(asin(cx)−ccos(cx))a2+c2+c1e−ax}}
✓ Maple : cpu = 0.211 (sec), leaf count = 37
{y(x)=e−ax_C1+b(sin(cx)a−ccos(cx))a2+c2}
(1)dydx+ay(x)=bsin(cx)
Integrating factor μ=e∫adx=eax. Hence (1) becomes
ddx(μy(x))=μbsin(cx)μy(x)=b∫μsin(cx)dx+C
Replacing μ by eax
(2)y(x)=be−ax∫eaxsin(cx)dx+Ce−ax
Using sin(cx)=eicx−e−icx2i then ∫eaxsin(cx)dx=∫e(ic+a)x−e(−ic+a)x2idx=12i(e(ic+a)xic+a−e(−ic+a)x−ic+a)=12ieax(eicxic+a−e−icx−ic+a)=12ieax(eicx(−ic+a)−e−icx(ic+a)(ic+a)(−ic+a))=12ieax(−iceicx+aeicx−ice−icx−ae−icx(c2+a2))=12ieax(−ic(eicx+e−icx)+a(eicx−e−icx)(c2+a2))=eax(c2+a2)(−ic(eicx+e−icx)2i+a(eicx−e−icx)2i)=eax(c2+a2)(−ccoscx+asincx)
Therefore (2) becomes
y(x)=be−ax[eax(c2+a2)(−ccoscx+asincx)]+Ce−ax=b(c2+a2)(−ccoscx+asincx)+Ce−ax
[next] [prev] [prev-tail] [front] [up]