\[ \left (y(x)^3-x^3\right ) y'(x)-x^2 y(x)=0 \] ✓ Mathematica : cpu = 0.054628 (sec), leaf count = 201
\[\left \{\left \{y(x)\to \sqrt [3]{x^3-\sqrt {x^6-e^{6 c_1}}}\right \},\left \{y(x)\to -\sqrt [3]{-1} \sqrt [3]{x^3-\sqrt {x^6-e^{6 c_1}}}\right \},\left \{y(x)\to (-1)^{2/3} \sqrt [3]{x^3-\sqrt {x^6-e^{6 c_1}}}\right \},\left \{y(x)\to \sqrt [3]{\sqrt {x^6-e^{6 c_1}}+x^3}\right \},\left \{y(x)\to -\sqrt [3]{-1} \sqrt [3]{\sqrt {x^6-e^{6 c_1}}+x^3}\right \},\left \{y(x)\to (-1)^{2/3} \sqrt [3]{\sqrt {x^6-e^{6 c_1}}+x^3}\right \}\right \}\]
✓ Maple : cpu = 0.42 (sec), leaf count = 231
\[ \left \{ y \left ( x \right ) ={x{\frac {1}{\sqrt [3]{- \left ( {x}^{3}{\it \_C1}-\sqrt {{{\it \_C1}}^{2}{x}^{6}+1} \right ) {x}^{3}{\it \_C1}}}}},y \left ( x \right ) ={x{\frac {1}{\sqrt [3]{- \left ( {x}^{3}{\it \_C1}+\sqrt {{{\it \_C1}}^{2}{x}^{6}+1} \right ) {x}^{3}{\it \_C1}}}}},y \left ( x \right ) =4\,{\frac {x}{ \left ( 1+i\sqrt {3} \right ) ^{2}\sqrt [3]{- \left ( {x}^{3}{\it \_C1}-\sqrt {{{\it \_C1}}^{2}{x}^{6}+1} \right ) {x}^{3}{\it \_C1}}}},y \left ( x \right ) =4\,{\frac {x}{ \left ( 1+i\sqrt {3} \right ) ^{2}\sqrt [3]{- \left ( {x}^{3}{\it \_C1}+\sqrt {{{\it \_C1}}^{2}{x}^{6}+1} \right ) {x}^{3}{\it \_C1}}}},y \left ( x \right ) =4\,{\frac {x}{ \left ( i\sqrt {3}-1 \right ) ^{2}\sqrt [3]{- \left ( {x}^{3}{\it \_C1}-\sqrt {{{\it \_C1}}^{2}{x}^{6}+1} \right ) {x}^{3}{\it \_C1}}}},y \left ( x \right ) =4\,{\frac {x}{ \left ( i\sqrt {3}-1 \right ) ^{2}\sqrt [3]{- \left ( {x}^{3}{\it \_C1}+\sqrt {{{\it \_C1}}^{2}{x}^{6}+1} \right ) {x}^{3}{\it \_C1}}}} \right \} \]