\[ \left (2 x^3 y(x)^3-x\right ) y'(x)+2 x^3 y(x)^3-y(x)=0 \] ✓ Mathematica : cpu = 0.0563137 (sec), leaf count = 672
\[\left \{\left \{y(x)\to \frac {c_1 x^2+\frac {x^4 \left (c_1-2 x\right ){}^2}{\sqrt [3]{12 c_1 x^8-6 c_1^2 x^7+c_1^3 x^6+3 \sqrt {3} \sqrt {x^8 \left (-24 c_1 x^4+12 c_1^2 x^3-2 c_1^3 x^2+16 x^5+27\right )}-8 x^9-27 x^4}}+\sqrt [3]{12 c_1 x^8-6 c_1^2 x^7+c_1^3 x^6+3 \sqrt {3} \sqrt {x^8 \left (-24 c_1 x^4+12 c_1^2 x^3-2 c_1^3 x^2+16 x^5+27\right )}-8 x^9-27 x^4}-2 x^3}{6 x^2}\right \},\left \{y(x)\to \frac {2 x^2 \left (c_1-2 x\right )-\frac {i \left (\sqrt {3}-i\right ) x^4 \left (c_1-2 x\right ){}^2}{\sqrt [3]{12 c_1 x^8-6 c_1^2 x^7+c_1^3 x^6+3 \sqrt {3} \sqrt {x^8 \left (-24 c_1 x^4+12 c_1^2 x^3-2 c_1^3 x^2+16 x^5+27\right )}-8 x^9-27 x^4}}+i \left (\sqrt {3}+i\right ) \sqrt [3]{12 c_1 x^8-6 c_1^2 x^7+c_1^3 x^6+3 \sqrt {3} \sqrt {x^8 \left (-24 c_1 x^4+12 c_1^2 x^3-2 c_1^3 x^2+16 x^5+27\right )}-8 x^9-27 x^4}}{12 x^2}\right \},\left \{y(x)\to \frac {2 x^2 \left (c_1-2 x\right )+\frac {i \left (\sqrt {3}+i\right ) x^4 \left (c_1-2 x\right ){}^2}{\sqrt [3]{12 c_1 x^8-6 c_1^2 x^7+c_1^3 x^6+3 \sqrt {3} \sqrt {x^8 \left (-24 c_1 x^4+12 c_1^2 x^3-2 c_1^3 x^2+16 x^5+27\right )}-8 x^9-27 x^4}}-\left (1+i \sqrt {3}\right ) \sqrt [3]{12 c_1 x^8-6 c_1^2 x^7+c_1^3 x^6+3 \sqrt {3} \sqrt {x^8 \left (-24 c_1 x^4+12 c_1^2 x^3-2 c_1^3 x^2+16 x^5+27\right )}-8 x^9-27 x^4}}{12 x^2}\right \}\right \}\]
✓ Maple : cpu = 0.143 (sec), leaf count = 815
\[ \left \{ y \left ( x \right ) =-{\frac {1}{12\,x} \left ( \left ( -2\,{\it \_C1}\,x+4\,{x}^{2} \right ) \sqrt [3]{ \left ( {{\it \_C1}}^{3}{x}^{2}-6\,{{\it \_C1}}^{2}{x}^{3}+12\,{\it \_C1}\,{x}^{4}-8\,{x}^{5}+3\,\sqrt {-6\,{{\it \_C1}}^{3}{x}^{2}+36\,{{\it \_C1}}^{2}{x}^{3}-72\,{\it \_C1}\,{x}^{4}+48\,{x}^{5}+81}-27 \right ) x}+ \left ( -4\,i{x}^{4}+4\,i{\it \_C1}\,{x}^{3}-i{{\it \_C1}}^{2}{x}^{2}+i \left ( \left ( {{\it \_C1}}^{3}{x}^{2}-6\,{{\it \_C1}}^{2}{x}^{3}+12\,{\it \_C1}\,{x}^{4}-8\,{x}^{5}+3\,\sqrt {-6\,{{\it \_C1}}^{3}{x}^{2}+36\,{{\it \_C1}}^{2}{x}^{3}-72\,{\it \_C1}\,{x}^{4}+48\,{x}^{5}+81}-27 \right ) x \right ) ^{{\frac {2}{3}}} \right ) \sqrt {3}+4\,{x}^{4}-4\,{x}^{3}{\it \_C1}+{{\it \_C1}}^{2}{x}^{2}+ \left ( \left ( {{\it \_C1}}^{3}{x}^{2}-6\,{{\it \_C1}}^{2}{x}^{3}+12\,{\it \_C1}\,{x}^{4}-8\,{x}^{5}+3\,\sqrt {-6\,{{\it \_C1}}^{3}{x}^{2}+36\,{{\it \_C1}}^{2}{x}^{3}-72\,{\it \_C1}\,{x}^{4}+48\,{x}^{5}+81}-27 \right ) x \right ) ^{{\frac {2}{3}}} \right ) {\frac {1}{\sqrt [3]{ \left ( {{\it \_C1}}^{3}{x}^{2}-6\,{{\it \_C1}}^{2}{x}^{3}+12\,{\it \_C1}\,{x}^{4}-8\,{x}^{5}+3\,\sqrt {-6\,{{\it \_C1}}^{3}{x}^{2}+36\,{{\it \_C1}}^{2}{x}^{3}-72\,{\it \_C1}\,{x}^{4}+48\,{x}^{5}+81}-27 \right ) x}}}},y \left ( x \right ) ={\frac {1}{12\,x} \left ( \left ( 2\,{\it \_C1}\,x-4\,{x}^{2} \right ) \sqrt [3]{ \left ( {{\it \_C1}}^{3}{x}^{2}-6\,{{\it \_C1}}^{2}{x}^{3}+12\,{\it \_C1}\,{x}^{4}-8\,{x}^{5}+3\,\sqrt {-6\,{{\it \_C1}}^{3}{x}^{2}+36\,{{\it \_C1}}^{2}{x}^{3}-72\,{\it \_C1}\,{x}^{4}+48\,{x}^{5}+81}-27 \right ) x}+ \left ( -4\,i{x}^{4}+4\,i{\it \_C1}\,{x}^{3}-i{{\it \_C1}}^{2}{x}^{2}+i \left ( \left ( {{\it \_C1}}^{3}{x}^{2}-6\,{{\it \_C1}}^{2}{x}^{3}+12\,{\it \_C1}\,{x}^{4}-8\,{x}^{5}+3\,\sqrt {-6\,{{\it \_C1}}^{3}{x}^{2}+36\,{{\it \_C1}}^{2}{x}^{3}-72\,{\it \_C1}\,{x}^{4}+48\,{x}^{5}+81}-27 \right ) x \right ) ^{{\frac {2}{3}}} \right ) \sqrt {3}-4\,{x}^{4}+4\,{x}^{3}{\it \_C1}-{{\it \_C1}}^{2}{x}^{2}- \left ( \left ( {{\it \_C1}}^{3}{x}^{2}-6\,{{\it \_C1}}^{2}{x}^{3}+12\,{\it \_C1}\,{x}^{4}-8\,{x}^{5}+3\,\sqrt {-6\,{{\it \_C1}}^{3}{x}^{2}+36\,{{\it \_C1}}^{2}{x}^{3}-72\,{\it \_C1}\,{x}^{4}+48\,{x}^{5}+81}-27 \right ) x \right ) ^{{\frac {2}{3}}} \right ) {\frac {1}{\sqrt [3]{ \left ( {{\it \_C1}}^{3}{x}^{2}-6\,{{\it \_C1}}^{2}{x}^{3}+12\,{\it \_C1}\,{x}^{4}-8\,{x}^{5}+3\,\sqrt {-6\,{{\it \_C1}}^{3}{x}^{2}+36\,{{\it \_C1}}^{2}{x}^{3}-72\,{\it \_C1}\,{x}^{4}+48\,{x}^{5}+81}-27 \right ) x}}}},y \left ( x \right ) ={\frac {1}{6\,x}\sqrt [3]{ \left ( {{\it \_C1}}^{3}{x}^{2}-6\,{{\it \_C1}}^{2}{x}^{3}+12\,{\it \_C1}\,{x}^{4}-8\,{x}^{5}+3\,\sqrt {-6\,{{\it \_C1}}^{3}{x}^{2}+36\,{{\it \_C1}}^{2}{x}^{3}-72\,{\it \_C1}\,{x}^{4}+48\,{x}^{5}+81}-27 \right ) x}}+{\frac { \left ( {\it \_C1}-2\,x \right ) ^{2}x}{6}{\frac {1}{\sqrt [3]{ \left ( {{\it \_C1}}^{3}{x}^{2}-6\,{{\it \_C1}}^{2}{x}^{3}+12\,{\it \_C1}\,{x}^{4}-8\,{x}^{5}+3\,\sqrt {-6\,{{\it \_C1}}^{3}{x}^{2}+36\,{{\it \_C1}}^{2}{x}^{3}-72\,{\it \_C1}\,{x}^{4}+48\,{x}^{5}+81}-27 \right ) x}}}}+{\frac {{\it \_C1}}{6}}-{\frac {x}{3}} \right \} \]