\[ (3 x+5) y'(x)^2-(3 y(x)+x) y'(x)+y(x)=0 \] ✓ Mathematica : cpu = 0.714467 (sec), leaf count = 300
\[\left \{\left \{y(x)\to -\frac {-3 e^{\frac {4 c_1}{3}} (2 x+5)+\sqrt {5} \sqrt {-e^{\frac {4 c_1}{3}} \left (e^{\frac {4 c_1}{3}}-12 x-15\right ){}^2}+30 x+25}{18 \left (e^{\frac {4 c_1}{3}}+5\right )}\right \},\left \{y(x)\to \frac {3 e^{\frac {4 c_1}{3}} (2 x+5)+\sqrt {5} \sqrt {-e^{\frac {4 c_1}{3}} \left (e^{\frac {4 c_1}{3}}-12 x-15\right ){}^2}-30 x-25}{18 \left (e^{\frac {4 c_1}{3}}+5\right )}\right \},\left \{y(x)\to \frac {3 e^{\frac {4 c_1}{3}} (2 x+5)-\sqrt {5} \sqrt {e^{\frac {4 c_1}{3}} \left (e^{\frac {4 c_1}{3}}+12 x+15\right ){}^2}+30 x+25}{18 \left (e^{\frac {4 c_1}{3}}-5\right )}\right \},\left \{y(x)\to \frac {3 e^{\frac {4 c_1}{3}} (2 x+5)+\sqrt {5} \sqrt {e^{\frac {4 c_1}{3}} \left (e^{\frac {4 c_1}{3}}+12 x+15\right ){}^2}+30 x+25}{18 \left (e^{\frac {4 c_1}{3}}-5\right )}\right \}\right \}\]
✓ Maple : cpu = 0.07 (sec), leaf count = 60
\[ \left \{ y \left ( x \right ) ={\frac { \left ( 3\,x+5 \right ) {{\it \_C1}}^{2}-{\it \_C1}\,x}{3\,{\it \_C1}-1}},y \left ( x \right ) ={\frac {x}{3}}+{\frac {10}{9}}-{\frac {2}{9}\sqrt {15\,x+25}},y \left ( x \right ) ={\frac {x}{3}}+{\frac {10}{9}}+{\frac {2}{9}\sqrt {15\,x+25}} \right \} \]