2.494   ODE No. 494

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

\[ \left (y(x)^2-a^2 x^2\right ) y'(x)^2+\left (1-a^2\right ) x^2+2 x y(x) y'(x)=0 \] Mathematica : cpu = 300.611 (sec), leaf count = 0 , timed out

$Aborted

Maple : cpu = 0.338 (sec), leaf count = 161

\[ \left \{ y \left ( x \right ) =\sqrt {{a}^{2}-1}x,y \left ( x \right ) ={\it RootOf} \left ( -\ln \left ( x \right ) +\int ^{{\it \_Z}}\!{\frac {1}{ \left ( {{\it \_a}}^{2}+1 \right ) \left ( {{\it \_a}}^{2}-{a}^{2}+1 \right ) } \left ( -{{\it \_a}}^{3}+{\it \_a}\,{a}^{2}+\sqrt {{{\it \_a}}^{2}{a}^{2}-{a}^{4}+{a}^{2}}-{\it \_a} \right ) }{d{\it \_a}}+{\it \_C1} \right ) x,y \left ( x \right ) ={\it RootOf} \left ( -\ln \left ( x \right ) -\int ^{{\it \_Z}}\!{\frac {1}{ \left ( {{\it \_a}}^{2}+1 \right ) \left ( {{\it \_a}}^{2}-{a}^{2}+1 \right ) } \left ( {{\it \_a}}^{3}-{\it \_a}\,{a}^{2}+\sqrt {{{\it \_a}}^{2}{a}^{2}-{a}^{4}+{a}^{2}}+{\it \_a} \right ) }{d{\it \_a}}+{\it \_C1} \right ) x,y \left ( x \right ) =-\sqrt {{a}^{2}-1}x \right \} \]