[next] [prev] [prev-tail] [tail] [up]
f(x)1−ng′(x)y(x)n(−(ag(x)+b)−n)−y(x)f′(x)f(x)−f(x)g′(x)+y′(x)=0 ✓ Mathematica : cpu = 105.501 (sec), leaf count = 95
Solve[f(x)(ag(x)+b)log(ag(x)+b)(f(x)−n(ag(x)+b)−n)1na+c1=∫1y(x)(f(x)−n(ag(x)+b)−n)1n1−(an)1nK[1]+K[1]n+1dK[1],y(x)]
✓ Maple : cpu = 0.07 (sec), leaf count = 281
{y(x)=(ag(x)+b)f(x)aRootOf(−∫_Z((ddxg(x))(ag(x)+b)−n(f(x))1−n)−n−1(f(x)ddxg(x))−2n+1((ddxg(x))3(ag(x)+b)−n−1a(f(x))2−nn)nn−n_a((ddxg(x))(ag(x)+b)−n(f(x))1−n)−n−1(f(x)ddxg(x))−2n+1((ddxg(x))3(ag(x)+b)−n−1a(f(x))2−nn)nn−n−((ddxg(x))(ag(x)+b)−n(f(x))1−n)−n−1(f(x)ddxg(x))−2n+1((ddxg(x))3(ag(x)+b)−n−1a(f(x))2−nn)nn−n−_and_a−ln(ag(x)+b)+_C1)}
[next] [prev] [prev-tail] [front] [up]