\[ y'(x)=\frac {F\left (x^2+y(x)-x\right )-2 x^2+x}{x} \] ✓ Mathematica : cpu = 252.776 (sec), leaf count = 103
\[\text {Solve}\left [c_1=\int _1^{y(x)} \left (-\int _1^x \frac {(2 K[1]-1) F'\left (K[1]^2-K[1]+K[2]\right )}{F\left (K[1]^2-K[1]+K[2]\right )^2} \, dK[1]-\frac {1}{F\left (K[2]+x^2-x\right )}\right ) \, dK[2]+\int _1^x \left (\frac {1-2 K[1]}{F((K[1]-1) K[1]+y(x))}+\frac {1}{K[1]}\right ) \, dK[1],y(x)\right ]\]
✓ Maple : cpu = 0.098 (sec), leaf count = 26
\[ \left \{ y \left ( x \right ) =-{x}^{2}+{\it RootOf} \left ( -\ln \left ( x \right ) +\int ^{{\it \_Z}}\! \left ( F \left ( {\it \_a} \right ) \right ) ^{-1}{d{\it \_a}}+{\it \_C1} \right ) +x \right \} \]