2.62   ODE No. 62

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

y(x)y(x)x2x2y(x)2xy(x)x2y(x)2+x=0 Mathematica : cpu = 4.17572 (sec), leaf count = 36

Solve[2tan1(y(x)x2y(x)2)+x2+y(x)2=2c1,y(x)]

Maple : cpu = 0.424 (sec), leaf count = 34

{(y(x))22+arctan(y(x)1x2(y(x))2)+x22_C1=0}

Hand solution

(1)y=yx2x2y2xyx2y2+x Let y=ux then y=u+xu thereforeu+xu=yx2x2y2xyx2y2+x=uxx2x2(ux)2x(ux)x2(ux)2+x=uxx31u2x3u1u2+x=ux21u2x2u1u2+1

Henceu(x2u1u2+1)+xu(x2u1u2+1)=ux21u2x2u21u2+u+u(x3u1u2+x)=ux21u2x2u21u2+u(x3u1u2+x)=x21u2xu21u2+u(x2u1u2+1)=x1u2xu2+u(x2u+11u2)=xx(1+u2)+u(x2u+11u2)=0

Hence(2)x(1+u2)dx+(x2u+11u2)du=0 Let M=x(1+u2),N=(x2u+11u2). Mu=2xuNx=2xu

Therefore (2) is exact.  Let x(1+u2)dx+(x2u+11u2)du=dU Since dU=Uxdx+Uudu. Comparing with the above, we see that (3)Ux=x(1+u2)(4)Uu=x2u+11u2

From (3)U=x(1+u2)dx(5)=x22(1+u2)+f(u)

From (4)du(x22(1+u2)+f(u))=x2u+11u2x2u+f(u)=x2u+11u2f(u)=11u2

Therefore f(u)=arcsin(u) From (5) we findU(x,u)=x22(1+u2)+arcsin(u) Since dU=0 thenx22(1+u2)+arcsin(u)=Cx22(1+u2)+arcsin(u)C=0

Since y=ux then the above can be written asx22(1+(yx)2)+arcsin(yx)C=0x22(x2+y2x2)+arcsin(yx)C=012(x2+y2)+arcsin(yx)C=0arcsin(yx)=C12(x2+y2)

Henceyx=sin(C12(x2+y2))y(x)=xsin(C12(x2+y2))