\[ y'(x)=\frac {x^3 \left (-\log \left (\frac {x+1}{x-1}\right )\right )+y(x)+x y(x)^2 \log \left (\frac {x+1}{x-1}\right )}{x} \] ✓ Mathematica : cpu = 0.0691604 (sec), leaf count = 111
\[\left \{\left \{y(x)\to \frac {x \left (-(x+1)^{x^2} e^{2 \left (c_1+x\right )}+x \left ((x+1)^{x^2} e^{2 \left (c_1+x\right )}+(x-1)^{x^2}\right )+(x-1)^{x^2}\right )}{(x+1)^{x^2} e^{2 \left (c_1+x\right )}+x \left ((x-1)^{x^2}-(x+1)^{x^2} e^{2 \left (c_1+x\right )}\right )+(x-1)^{x^2}}\right \}\right \}\]
✓ Maple : cpu = 0.174 (sec), leaf count = 39
\[ \left \{ y \left ( x \right ) =-\tanh \left ( {\frac {{x}^{2}}{2}\ln \left ( {\frac {1+x}{x-1}} \right ) }-{\frac {1}{2}\ln \left ( {\frac {1+x}{x-1}} \right ) }+{\it \_C1}+x-1 \right ) x \right \} \]