\[ y'(x)=\frac {y(x) (y(x)+1)}{x \left (x y(x)^4-y(x)-1\right )} \] ✓ Mathematica : cpu = 0.142795 (sec), leaf count = 34
\[\text {Solve}\left [y(x)+\frac {3}{2}=c_1+\frac {y(x)^2}{2}+\frac {1}{x y(x)}+\log (y(x)+1),y(x)\right ]\]
✓ Maple : cpu = 0.145 (sec), leaf count = 51
\[ \left \{ y \left ( x \right ) ={{\rm e}^{{\it RootOf} \left ( x \left ( {{\rm e}^{{\it \_Z}}} \right ) ^{3}-5\,x \left ( {{\rm e}^{{\it \_Z}}} \right ) ^{2}+2\,x{\it \_C1}\,{{\rm e}^{{\it \_Z}}}+2\,{\it \_Z}\,{{\rm e}^{{\it \_Z}}}x+7\,{{\rm e}^{{\it \_Z}}}x-2\,x{\it \_C1}-2\,x{\it \_Z}-3\,x+2 \right ) }}-1 \right \} \]