2.792   ODE No. 792

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

\[ y'(x)=\frac {y(x) \text {sech}\left (\frac {1}{x+1}\right ) \left (x^3 y(x)+x^2 y(x)-x^2-x-x \cosh \left (\frac {1}{x+1}\right )+\cosh \left (\frac {1}{x+1}\right )\right )}{(x-1) x} \] Mathematica : cpu = 300. (sec), leaf count = 0 , timed out

$Aborted

Maple : cpu = 0.711 (sec), leaf count = 112

\[ \left \{ y \left ( x \right ) ={1{{\rm e}^{\int \!{\frac { \left ( 1-x \right ) \cosh \left ( \left ( 1+x \right ) ^{-1} \right ) -{x}^{2}-x}{x \left ( x-1 \right ) \cosh \left ( \left ( 1+x \right ) ^{-1} \right ) }}\,{\rm d}x}} \left ( \int \!-{\frac {x \left ( 1+x \right ) }{ \left ( x-1 \right ) \cosh \left ( \left ( 1+x \right ) ^{-1} \right ) }{{\rm e}^{\int \!{\frac { \left ( 1-x \right ) \cosh \left ( \left ( 1+x \right ) ^{-1} \right ) -{x}^{2}-x}{x \left ( x-1 \right ) \cosh \left ( \left ( 1+x \right ) ^{-1} \right ) }}\,{\rm d}x}}}\,{\rm d}x+{\it \_C1} \right ) ^{-1}} \right \} \]