\[ y'(x)=\frac {y(x)}{x \left (x^3 y(x)^4+x^2 y(x)^3+y(x)-1\right )} \] ✓ Mathematica : cpu = 0.112203 (sec), leaf count = 66
\[\text {Solve}\left [c_1+\log (x)=\text {RootSum}\left [\text {$\#$1}^3 y(x)^3+\text {$\#$1}^2 y(x)^2+1\& ,\frac {\text {$\#$1} y(x) \log (x-\text {$\#$1})+\log (x-\text {$\#$1})}{3 \text {$\#$1} y(x)+2}\& \right ]+y(x),y(x)\right ]\]
✓ Maple : cpu = 3.16 (sec), leaf count = 32
\[ \left \{ -y \left ( x \right ) +\int ^{xy \left ( x \right ) }\!{\frac {1}{{\it \_a}\, \left ( {{\it \_a}}^{3}+{{\it \_a}}^{2}+1 \right ) }}{d{\it \_a}}-{\it \_C1}=0 \right \} \]