\[ y'(x)=\frac {64 x^3-240 x^2+64 x y(x)^2+64 y(x)^3-80 y(x)^2+300 x-125}{(4 x-5)^3} \] ✓ Mathematica : cpu = 0.238837 (sec), leaf count = 118
\[\text {Solve}\left [57 \text {RootSum}\left [-19 \text {$\#$1}^3+6 \sqrt [3]{38} \text {$\#$1}-19\& ,\frac {\log \left (\frac {12 y(x)+4 x-5}{\sqrt [3]{38} \sqrt [3]{\frac {1}{(5-4 x)^6}} (4 x-5)^3}-\text {$\#$1}\right )}{2 \sqrt [3]{38}-19 \text {$\#$1}^2}\& \right ]+9 c_1+38^{2/3} \left (\frac {1}{(5-4 x)^6}\right )^{2/3} (5-4 x)^4 \log (5-4 x)=0,y(x)\right ]\]
✓ Maple : cpu = 0.024 (sec), leaf count = 41
\[ \left \{ y \left ( x \right ) =-{\frac {{\it RootOf} \left ( -\int ^{{\it \_Z}}\! \left ( {{\it \_a}}^{3}-{{\it \_a}}^{2}-{\it \_a}-1 \right ) ^{-1}{d{\it \_a}}+\ln \left ( 4\,x-5 \right ) +{\it \_C1} \right ) \left ( 4\,x-5 \right ) }{4}} \right \} \]