\[ y'(x)=\frac {y(x) \left (x^3+x^2 y(x)+y(x)^2\right )}{(x-1) x^2 (y(x)+x)} \] ✓ Mathematica : cpu = 0.0941342 (sec), leaf count = 66
\[\text {Solve}\left [\log \left (\frac {y(x)}{x}\right )+\frac {\tan ^{-1}\left (\frac {2 y(x)+x}{\sqrt {3} x}\right )}{\sqrt {3}}+\log (x)=c_1+\frac {1}{2} \log \left (\frac {x^2+x y(x)+y(x)^2}{x^2}\right )+\log (1-x),y(x)\right ]\]
✓ Maple : cpu = 0.424 (sec), leaf count = 61
\[ \left \{ \ln \left ( {\frac {y \left ( x \right ) }{x}} \right ) -{\frac {1}{2}\ln \left ( {\frac { \left ( y \left ( x \right ) \right ) ^{2}+xy \left ( x \right ) +{x}^{2}}{{x}^{2}}} \right ) }+{\frac {\sqrt {3}}{3}\arctan \left ( {\frac { \left ( x+2\,y \left ( x \right ) \right ) \sqrt {3}}{3\,x}} \right ) }+\ln \left ( x \right ) -\ln \left ( x-1 \right ) -{\it \_C1}=0 \right \} \]