\[ y'(x)=\frac {(y(x)+1) (2 y(x)+1)}{x \left (2 x y(x)^4+x y(x)^3-2 y(x)-2\right )} \] ✓ Mathematica : cpu = 0.40808 (sec), leaf count = 46
\[\text {Solve}\left [\frac {1}{16} \left (-2 y(x)^2+6 y(x)-\frac {8}{2 x y(x)+x}-8 \log (y(x)+1)+\log (2 y(x)+1)\right )=c_1,y(x)\right ]\]
✓ Maple : cpu = 0.297 (sec), leaf count = 54
\[ \left \{ y \left ( x \right ) ={\frac {1}{2}{{\rm e}^{{\it RootOf} \left ( x \left ( {{\rm e}^{{\it \_Z}}} \right ) ^{3}-8\,x \left ( {{\rm e}^{{\it \_Z}}} \right ) ^{2}+16\,\ln \left ( 1/2\,{{\rm e}^{{\it \_Z}}}+1/2 \right ) x{{\rm e}^{{\it \_Z}}}+8\,{\it \_C1}\,x{{\rm e}^{{\it \_Z}}}-2\,{\it \_Z}\,x{{\rm e}^{{\it \_Z}}}+7\,{{\rm e}^{{\it \_Z}}}x+16 \right ) }}}-{\frac {1}{2}} \right \} \]