\[ y'(x)=\frac {y(x) \left (x^4+3 x y(x)^2+3 y(x)^2\right )}{x (x+1) \left (6 y(x)^2+x\right )} \] ✓ Mathematica : cpu = 0.846903 (sec), leaf count = 90
\[\left \{\left \{y(x)\to -\frac {\sqrt {x} \sqrt {W\left (\frac {6 (x+1)^2 e^{2 c_1+x^2-2 x-3}}{x}\right )}}{\sqrt {6}}\right \},\left \{y(x)\to \frac {\sqrt {x} \sqrt {W\left (\frac {6 (x+1)^2 e^{2 c_1+x^2-2 x-3}}{x}\right )}}{\sqrt {6}}\right \}\right \}\]
✓ Maple : cpu = 0.347 (sec), leaf count = 60
\[ \left \{ \left ( \left ( y \left ( x \right ) \right ) ^{-2}+6\,{x}^{-1} \right ) ^{-1}={\frac {x}{54} \left ( {{\rm e}^{{\it RootOf} \left ( {x}^{2}{{\rm e}^{{\it \_Z}}}-{{\rm e}^{{\it \_Z}}}\ln \left ( {\frac {x \left ( {{\rm e}^{{\it \_Z}}}+9 \right ) }{2\, \left ( 1+x \right ) ^{2}}} \right ) +3\,{{\rm e}^{{\it \_Z}}}{\it \_C1}+{\it \_Z}\,{{\rm e}^{{\it \_Z}}}-2\,{{\rm e}^{{\it \_Z}}}x+9 \right ) }}+9 \right ) } \right \} \]