\[ y'(x)=\frac {\alpha ^3 y(x)^3+\alpha ^3 y(x)^2+\alpha ^3+3 \alpha ^2 \beta x y(x)^2+2 \alpha ^2 \beta x y(x)+3 \alpha \beta ^2 x^2 y(x)+\alpha \beta ^2 x^2+\beta ^3 x^3}{\alpha ^3} \] ✓ Mathematica : cpu = 0.216126 (sec), leaf count = 136
\[\text {Solve}\left [3 (29 \alpha +27 \beta )^{2/3} \text {RootSum}\left [\text {$\#$1}^3 (29 \alpha +27 \beta )^{2/3}-3 \text {$\#$1} \alpha ^{2/3}+(29 \alpha +27 \beta )^{2/3}\& ,\frac {\log \left (\frac {3 \alpha y(x)+\alpha +3 \beta x}{\alpha \sqrt [3]{\frac {27 \beta }{\alpha }+29}}-\text {$\#$1}\right )}{\alpha ^{2/3}-\text {$\#$1}^2 (29 \alpha +27 \beta )^{2/3}}\& \right ]+x \left (\frac {27 \beta }{\alpha }+29\right )^{2/3}+9 c_1=0,y(x)\right ]\]
✓ Maple : cpu = 0.075 (sec), leaf count = 42
\[ \left \{ y \left ( x \right ) ={\frac {{\it RootOf} \left ( \int ^{{\it \_Z}}\! \left ( {{\it \_a}}^{3}\alpha +{{\it \_a}}^{2}\alpha +\alpha +\beta \right ) ^{-1}{d{\it \_a}}\alpha -x+{\it \_C1} \right ) \alpha -\beta \,x}{\alpha }} \right \} \]