\[ y'(x)=-\frac {e^{-1/x} \left (-\text {$\_$F1}\left (e^{\frac {1}{x}} y(x)\right )-\frac {e^{\frac {1}{x}} y(x)}{x}\right )}{x} \] ✓ Mathematica : cpu = 2.04654 (sec), leaf count = 137
\[\text {Solve}\left [c_1=\int _1^{y(x)} \left (-\int _1^x \frac {e^{\frac {1}{K[1]}} \left (\text {$\_$F1}\left (e^{\frac {1}{K[1]}} K[2]\right )-e^{\frac {1}{K[1]}} K[2] \text {$\_$F1}'\left (e^{\frac {1}{K[1]}} K[2]\right )\right )}{K[1]^2 \left (\text {$\_$F1}\left (e^{\frac {1}{K[1]}} K[2]\right )\right ){}^2} \, dK[1]-\frac {e^{\frac {1}{x}}}{\text {$\_$F1}\left (e^{\frac {1}{x}} K[2]\right )}\right ) \, dK[2]+\int _1^x \frac {\frac {y(x) e^{\frac {1}{K[1]}}}{\text {$\_$F1}\left (y(x) e^{\frac {1}{K[1]}}\right )}+K[1]}{K[1]^2} \, dK[1],y(x)\right ]\]
✓ Maple : cpu = 0.187 (sec), leaf count = 26
\[ \left \{ y \left ( x \right ) ={\frac {{\it RootOf} \left ( -\ln \left ( x \right ) +\int ^{{\it \_Z}}\! \left ( {\it \_F1} \left ( {\it \_a} \right ) \right ) ^{-1}{d{\it \_a}}+{\it \_C1} \right ) }{{{\rm e}^{{x}^{-1}}}}} \right \} \]