\[ y'(x)=\frac {x^6+9 x^4 y(x)-6 x^3+27 x^2 y(x)^2-18 x y(x)+27 y(x)^3-18 x}{9 x^2+27 y(x)+27} \] ✓ Mathematica : cpu = 0.0205884 (sec), leaf count = 57
\[\left \{\left \{y(x)\to \frac {27}{\sqrt {c_1-1458 x}-27}-\frac {x^2}{3}\right \},\left \{y(x)\to -\frac {27}{\sqrt {c_1-1458 x}+27}-\frac {x^2}{3}\right \}\right \}\]
✓ Maple : cpu = 0.055 (sec), leaf count = 77
\[ \left \{ y \left ( x \right ) ={\frac {1}{-6\,x+6\,{\it \_C1}} \left ( -2\,{\it \_C1}\,{x}^{2}+2\,{x}^{3}-3\,\sqrt {2\,{\it \_C1}-2\,x+1}+3 \right ) },y \left ( x \right ) ={\frac {1}{-6\,x+6\,{\it \_C1}} \left ( -2\,{\it \_C1}\,{x}^{2}+2\,{x}^{3}+3\,\sqrt {2\,{\it \_C1}-2\,x+1}+3 \right ) } \right \} \]