\[ y'(x)=\frac {x^6+3 x^5 y(x)+3 x^4 y(x)^2+x^4+x^3 y(x)^3+2 x^3 y(x)+x^2 y(x)^2-y(x)-2 x+1}{x} \] ✓ Mathematica : cpu = 0.100349 (sec), leaf count = 95
\[\text {Solve}\left [87 \text {RootSum}\left [-29 \text {$\#$1}^3+3 \sqrt [3]{29} \text {$\#$1}-29\& ,\frac {\log \left (\frac {x \left (3 x^2+3 x y(x)+1\right )}{\sqrt [3]{29} \sqrt [3]{x^3}}-\text {$\#$1}\right )}{\sqrt [3]{29}-29 \text {$\#$1}^2}\& \right ]+9 c_1+\frac {29^{2/3} \left (x^3\right )^{2/3}}{x}=0,y(x)\right ]\]
✓ Maple : cpu = 0.036 (sec), leaf count = 42
\[ \left \{ y \left ( x \right ) ={\frac {-9\,{x}^{2}+29\,{\it RootOf} \left ( -81\,\int ^{{\it \_Z}}\! \left ( 841\,{{\it \_a}}^{3}-27\,{\it \_a}+27 \right ) ^{-1}{d{\it \_a}}+x+3\,{\it \_C1} \right ) -3}{9\,x}} \right \} \]