\[ y'(x)=\frac {2 a x}{-128 a^4+96 a^3 x y(x)^2+32 a^3 x-24 a^2 x^2 y(x)^4-16 a^2 x^2 y(x)^2+2 a x^3 y(x)^6+2 a x^3 y(x)^4+2 a x^3-x^3 y(x)} \] ✓ Mathematica : cpu = 1.76681 (sec), leaf count = 199
\[\text {Solve}\left [y(x)=\text {RootSum}\left [-\text {$\#$1}^3 y(x)^6-\text {$\#$1}^3 y(x)^4-\text {$\#$1}^3+12 \text {$\#$1}^2 a y(x)^4+8 \text {$\#$1}^2 a y(x)^2-48 \text {$\#$1} a^2 y(x)^2-16 \text {$\#$1} a^2+64 a^3\& ,\frac {\text {$\#$1} \log (x-\text {$\#$1})}{3 \text {$\#$1}^2 y(x)^6+3 \text {$\#$1}^2 y(x)^4+3 \text {$\#$1}^2-24 \text {$\#$1} a y(x)^4-16 \text {$\#$1} a y(x)^2+48 a^2 y(x)^2+16 a^2}\& \right ]+\frac {\text {RootSum}\left [\text {$\#$1}^3+\text {$\#$1}^2+1\& ,\frac {\log \left (y(x)^2-\text {$\#$1}\right )}{3 \text {$\#$1}^2+2 \text {$\#$1}}\& \right ]}{4 a}+c_1,y(x)\right ]\]
✗ Maple : cpu = 0. (sec), leaf count = 0 , exception
time expired