\[ y'(x)=\frac {\csc \left (\frac {y(x)}{2 x}\right ) \sec \left (\frac {y(x)}{2 x}\right ) \sec \left (\frac {y(x)}{x}\right ) \left (-\frac {1}{2} x y(x) \sin \left (\frac {y(x)}{x}\right )-\frac {1}{2} y(x) \sin \left (\frac {y(x)}{x}\right )+x \sin \left (\frac {y(x)}{2 x}\right ) \sin \left (\frac {y(x)}{x}\right ) \cos \left (\frac {y(x)}{2 x}\right )+\frac {1}{2} x y(x) \sin \left (\frac {y(x)}{2 x}\right ) \cos \left (\frac {y(x)}{2 x}\right )+\frac {1}{2} y(x) \sin \left (\frac {y(x)}{2 x}\right ) \cos \left (\frac {y(x)}{2 x}\right )+\frac {1}{2} x y(x) \sin \left (\frac {3 y(x)}{2 x}\right ) \cos \left (\frac {y(x)}{2 x}\right )+\frac {1}{2} y(x) \sin \left (\frac {3 y(x)}{2 x}\right ) \cos \left (\frac {y(x)}{2 x}\right )\right )}{x (x+1)} \] ✓ Mathematica : cpu = 0.0634151 (sec), leaf count = 19
\[\left \{\left \{y(x)\to x \sin ^{-1}\left (\frac {e^{c_1} x}{x+1}\right )\right \}\right \}\]
✓ Maple : cpu = 0.093 (sec), leaf count = 15
\[ \left \{ y \left ( x \right ) =\arcsin \left ( {\frac {{\it \_C1}\,x}{1+x}} \right ) x \right \} \]