\[ y(x) \left (a x^m+b\right )+x^2 y''(x)-x y'(x)=0 \] ✓ Mathematica : cpu = 0.08 (sec), leaf count = 326
\[\left \{\left \{y(x)\to c_1 m^{-\frac {2 \left (m-i \sqrt {b-1} m\right )}{m^2}-\frac {2 i \sqrt {b-1}}{m}} a^{\frac {m-i \sqrt {b-1} m}{m^2}+\frac {i \sqrt {b-1}}{m}} \left (x^m\right )^{\frac {m-i \sqrt {b-1} m}{m^2}+\frac {i \sqrt {b-1}}{m}} \Gamma \left (1-\frac {2 i \sqrt {b-1}}{m}\right ) J_{-\frac {2 i \sqrt {b-1}}{m}}\left (\frac {2 \sqrt {a} \sqrt {x^m}}{m}\right )+c_2 m^{\frac {2 i \sqrt {b-1}}{m}-\frac {2 \left (m+i \sqrt {b-1} m\right )}{m^2}} a^{\frac {m+i \sqrt {b-1} m}{m^2}-\frac {i \sqrt {b-1}}{m}} \left (x^m\right )^{\frac {m+i \sqrt {b-1} m}{m^2}-\frac {i \sqrt {b-1}}{m}} \Gamma \left (\frac {2 i \sqrt {b-1}}{m}+1\right ) J_{\frac {2 i \sqrt {b-1}}{m}}\left (\frac {2 \sqrt {a} \sqrt {x^m}}{m}\right )\right \}\right \}\] ✓ Maple : cpu = 0.042 (sec), leaf count = 63
\[ \left \{ y \left ( x \right ) =x \left ( {{\sl Y}_{2\,{\frac {\sqrt {1-b}}{m}}}\left (2\,{\frac {\sqrt {a}{x}^{m/2}}{m}}\right )}{\it \_C2}+{{\sl J}_{2\,{\frac {\sqrt {1-b}}{m}}}\left (2\,{\frac {\sqrt {a}{x}^{m/2}}{m}}\right )}{\it \_C1} \right ) \right \} \]