\[ (a x+b) y'(x)+c y(x)+x (x+1) y''(x)=0 \] ✓ Mathematica : cpu = 0.167604 (sec), leaf count = 151
\[\left \{\left \{y(x)\to c_2 x^{1-b} \, _2F_1\left (\frac {a}{2}-b-\frac {1}{2} \sqrt {a^2-2 a-4 c+1}+\frac {1}{2},\frac {a}{2}-b+\frac {1}{2} \sqrt {a^2-2 a-4 c+1}+\frac {1}{2};2-b;-x\right )+c_1 \, _2F_1\left (\frac {a}{2}-\frac {1}{2} \sqrt {a^2-2 a-4 c+1}-\frac {1}{2},\frac {a}{2}+\frac {1}{2} \sqrt {a^2-2 a-4 c+1}-\frac {1}{2};b;-x\right )\right \}\right \}\] ✓ Maple : cpu = 0.06 (sec), leaf count = 124
\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{\mbox {$_2$F$_1$}(-{\frac {1}{2}}+{\frac {a}{2}}-{\frac {1}{2}\sqrt {{a}^{2}-2\,a-4\,c+1}},-{\frac {1}{2}}+{\frac {a}{2}}+{\frac {1}{2}\sqrt {{a}^{2}-2\,a-4\,c+1}};\,a-b;\,1+x)}+{\it \_C2}\, \left ( 1+x \right ) ^{1-a+b}{\mbox {$_2$F$_1$}({\frac {1}{2}}-{\frac {a}{2}}-{\frac {1}{2}\sqrt {{a}^{2}-2\,a-4\,c+1}}+b,{\frac {1}{2}}-{\frac {a}{2}}+{\frac {1}{2}\sqrt {{a}^{2}-2\,a-4\,c+1}}+b;\,2-a+b;\,1+x)} \right \} \]