\[ -\left (l+2 x^2-5 x\right ) y'(x)+2 x^2 y''(x)-(4 x-1) y(x)=0 \] ✓ Mathematica : cpu = 0.448252 (sec), leaf count = 166
\[\left \{\left \{y(x)\to \frac {c_1 e^{x-\frac {l}{2 x}}}{\sqrt {x}}-\frac {\sqrt {\frac {\pi }{2}} c_2 e^{-\frac {l}{2 x}-\sqrt {2} \sqrt {-l}+x} \left (\text {erf}\left (\frac {\sqrt {-l}}{\sqrt {2} \sqrt {x}}-\sqrt {x}\right )+e^{2 \sqrt {2} \sqrt {-l}} \text {erf}\left (\frac {\sqrt {-l}}{\sqrt {2} \sqrt {x}}+\sqrt {x}\right )-e^{2 \sqrt {2} \sqrt {-l}}+1\right )}{\sqrt {-l} \sqrt {x}}\right \}\right \}\] ✓ Maple : cpu = 0.083 (sec), leaf count = 41
\[ \left \{ y \left ( x \right ) ={{{\rm e}^{x}} \left ( {\it \_C1}\,\int \!{\frac {1}{2\,{{\rm e}^{x}}}{{\rm e}^{{\frac {l}{2\,x}}}}{x}^{-{\frac {3}{2}}}}\,{\rm d}x+{\it \_C2} \right ) {\frac {1}{\sqrt {x}}} \left ( {{\rm e}^{{\frac {l}{2\,x}}}} \right ) ^{-1}} \right \} \]