\[ y''(x)=-\frac {y(x) (a x+b)}{4 (x-1)^2 x}-\frac {(3 x-1) y'(x)}{2 (x-1) x} \] ✓ Mathematica : cpu = 0.339199 (sec), leaf count = 893
\[\left \{\left \{y(x)\to e^{\frac {1}{4} (-2 \log (1-x)-\log (x))} \sqrt [4]{x} c_1 \, _2F_1\left (\frac {1}{4} \left (\sqrt {-8 a-4 b-4 \sqrt {4 a^2+4 b a-a-b}+1}+1\right ),\frac {\left (-8 a-4 b-4 \sqrt {4 a^2+4 b a-a-b}+1\right )^{3/2}+16 a \sqrt {-8 a-4 b-4 \sqrt {4 a^2+4 b a-a-b}+1}+8 b \sqrt {-8 a-4 b-4 \sqrt {4 a^2+4 b a-a-b}+1}-2 \sqrt {-8 a-4 b-4 \sqrt {4 a^2+4 b a-a-b}+1}+4 b+1}{16 b+4};\frac {1}{2};x\right ) (x-1)^{\frac {1}{2} \left (\frac {1}{4} \left (\sqrt {-8 a-4 b-4 \sqrt {4 a^2+4 b a-a-b}+1}+1\right )+\frac {\left (-8 a-4 b-4 \sqrt {4 a^2+4 b a-a-b}+1\right )^{3/2}+16 a \sqrt {-8 a-4 b-4 \sqrt {4 a^2+4 b a-a-b}+1}+8 b \sqrt {-8 a-4 b-4 \sqrt {4 a^2+4 b a-a-b}+1}-2 \sqrt {-8 a-4 b-4 \sqrt {4 a^2+4 b a-a-b}+1}+4 b+1}{16 b+4}+\frac {1}{2}\right )}+i e^{\frac {1}{4} (-2 \log (1-x)-\log (x))} x^{3/4} c_2 \, _2F_1\left (\frac {1}{4} \left (\sqrt {-8 a-4 b-4 \sqrt {4 a^2+4 b a-a-b}+1}+1\right )+\frac {1}{2},\frac {\left (-8 a-4 b-4 \sqrt {4 a^2+4 b a-a-b}+1\right )^{3/2}+16 a \sqrt {-8 a-4 b-4 \sqrt {4 a^2+4 b a-a-b}+1}+8 b \sqrt {-8 a-4 b-4 \sqrt {4 a^2+4 b a-a-b}+1}-2 \sqrt {-8 a-4 b-4 \sqrt {4 a^2+4 b a-a-b}+1}+4 b+1}{16 b+4}+\frac {1}{2};\frac {3}{2};x\right ) (x-1)^{\frac {1}{2} \left (\frac {1}{4} \left (\sqrt {-8 a-4 b-4 \sqrt {4 a^2+4 b a-a-b}+1}+1\right )+\frac {\left (-8 a-4 b-4 \sqrt {4 a^2+4 b a-a-b}+1\right )^{3/2}+16 a \sqrt {-8 a-4 b-4 \sqrt {4 a^2+4 b a-a-b}+1}+8 b \sqrt {-8 a-4 b-4 \sqrt {4 a^2+4 b a-a-b}+1}-2 \sqrt {-8 a-4 b-4 \sqrt {4 a^2+4 b a-a-b}+1}+4 b+1}{16 b+4}+\frac {1}{2}\right )}\right \}\right \}\] ✓ Maple : cpu = 0.07 (sec), leaf count = 57
\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{\it LegendreP} \left ( {\frac {1}{2}\sqrt {1-4\,a}}-{\frac {1}{2}},\sqrt {-a-b},\sqrt {x} \right ) +{\it \_C2}\,{\it LegendreQ} \left ( {\frac {1}{2}\sqrt {1-4\,a}}-{\frac {1}{2}},\sqrt {-a-b},\sqrt {x} \right ) \right \} \]