\[ y''(x)=\frac {\left (2 x^2-1\right ) y'(x)}{x^3}-\frac {y(x)}{x^4} \] ✓ Mathematica : cpu = 0.125646 (sec), leaf count = 119
\[\left \{\left \{y(x)\to c_1 \left (x^3+2 x-\frac {1}{x}\right )-\frac {c_2 \left (\sqrt {2 \pi } x^4 \text {erfi}\left (\frac {1}{\sqrt {2} x}\right )+2 \sqrt {2 \pi } x^2 \text {erfi}\left (\frac {1}{\sqrt {2} x}\right )-\sqrt {2 \pi } \text {erfi}\left (\frac {1}{\sqrt {2} x}\right )+2 e^{\frac {1}{2 x^2}} x-2 e^{\frac {1}{2 x^2}} x^3\right )}{16 x}\right \}\right \}\] ✓ Maple : cpu = 0.286 (sec), leaf count = 66
\[ \left \{ y \left ( x \right ) ={\frac {1}{x} \left ( {\it \_C1}\,\sqrt {2}\sqrt {\pi } \left ( {x}^{4}+2\,{x}^{2}-1 \right ) {\it erfi} \left ( {\frac {\sqrt {2}}{2\,x}} \right ) + \left ( -2\,{\it \_C1}\,{x}^{3}+2\,{\it \_C1}\,x \right ) {{\rm e}^{{\frac {1}{2\,{x}^{2}}}}}+{\it \_C2}\, \left ( {x}^{4}+2\,{x}^{2}-1 \right ) \right ) } \right \} \]