\[ y(x) \left (a x^3+\nu ^2-1\right )+\left (1-\nu ^2\right ) x y'(x)+x^3 y^{(3)}(x)=0 \] ✓ Mathematica : cpu = 0.953768 (sec), leaf count = 143
\[\left \{\left \{y(x)\to c_2 3^{\nu -1} a^{\frac {1-\nu }{3}} x^{1-\nu } \, _0F_2\left (;1-\frac {2 \nu }{3},1-\frac {\nu }{3};-\frac {a x^3}{27}\right )+c_3 3^{-\nu -1} a^{\frac {\nu +1}{3}} x^{\nu +1} \, _0F_2\left (;\frac {\nu }{3}+1,\frac {2 \nu }{3}+1;-\frac {a x^3}{27}\right )+\frac {1}{3} \sqrt [3]{a} c_1 x \, _0F_2\left (;1-\frac {\nu }{3},\frac {\nu }{3}+1;-\frac {a x^3}{27}\right )\right \}\right \}\] ✓ Maple : cpu = 0.154 (sec), leaf count = 81
\[ \left \{ y \left ( x \right ) ={\it \_C1}\,x{\mbox {$_0$F$_2$}(\ ;\,{\frac {\nu }{3}}+1,-{\frac {\nu }{3}}+1;\,-{\frac {a{x}^{3}}{27}})}+{\it \_C2}\,{x}^{-\nu +1}{\mbox {$_0$F$_2$}(\ ;\,1-{\frac {2\,\nu }{3}},-{\frac {\nu }{3}}+1;\,-{\frac {a{x}^{3}}{27}})}+{\it \_C3}\,{x}^{\nu +1}{\mbox {$_0$F$_2$}(\ ;\,{\frac {\nu }{3}}+1,{\frac {2\,\nu }{3}}+1;\,-{\frac {a{x}^{3}}{27}})} \right \} \]