\[ y''(x)+y(x) y'(x)-y(x)^3=0 \] ✗ Mathematica : cpu = 122.391 (sec), leaf count = 0 , could not solve
DSolve[-y[x]^3 + y[x]*Derivative[1][y][x] + Derivative[2][y][x] == 0, y[x], x]
✓ Maple : cpu = 0.137 (sec), leaf count = 291
\[ \left \{ \int ^{y \left ( x \right ) }\!2\, \left ( {\frac {{{\it \_a}}^{4}}{\sqrt [3]{{{\it \_a}}^{6}+2\,{\it \_C1}+2\,\sqrt {{\it \_C1}\,{{\it \_a}}^{6}+{{\it \_C1}}^{2}}}}}-{{\it \_a}}^{2}+\sqrt [3]{{{\it \_a}}^{6}+2\,{\it \_C1}+2\,\sqrt {{\it \_C1}\,{{\it \_a}}^{6}+{{\it \_C1}}^{2}}} \right ) ^{-1}{d{\it \_a}}-x-{\it \_C2}=0,\int ^{y \left ( x \right ) }\!4\, \left ( {\frac {{{\it \_a}}^{4} \left ( i\sqrt {3}-1 \right ) }{\sqrt [3]{{{\it \_a}}^{6}+2\,{\it \_C1}+2\,\sqrt {{\it \_C1}\,{{\it \_a}}^{6}+{{\it \_C1}}^{2}}}}}-i\sqrt {3}\sqrt [3]{{{\it \_a}}^{6}+2\,{\it \_C1}+2\,\sqrt {{\it \_C1}\,{{\it \_a}}^{6}+{{\it \_C1}}^{2}}}-2\,{{\it \_a}}^{2}-\sqrt [3]{{{\it \_a}}^{6}+2\,{\it \_C1}+2\,\sqrt {{\it \_C1}\,{{\it \_a}}^{6}+{{\it \_C1}}^{2}}} \right ) ^{-1}{d{\it \_a}}-x-{\it \_C2}=0,\int ^{y \left ( x \right ) }\!-4\, \left ( {\frac {{{\it \_a}}^{4} \left ( i\sqrt {3}+1 \right ) }{\sqrt [3]{{{\it \_a}}^{6}+2\,{\it \_C1}+2\,\sqrt {{\it \_C1}\,{{\it \_a}}^{6}+{{\it \_C1}}^{2}}}}}-i\sqrt {3}\sqrt [3]{{{\it \_a}}^{6}+2\,{\it \_C1}+2\,\sqrt {{\it \_C1}\,{{\it \_a}}^{6}+{{\it \_C1}}^{2}}}+2\,{{\it \_a}}^{2}+\sqrt [3]{{{\it \_a}}^{6}+2\,{\it \_C1}+2\,\sqrt {{\it \_C1}\,{{\it \_a}}^{6}+{{\it \_C1}}^{2}}} \right ) ^{-1}{d{\it \_a}}-x-{\it \_C2}=0 \right \} \]