\[ a y(x)+b+y'(x)^2-4 y(x)^3=0 \] ✓ Mathematica : cpu = 0.00545573 (sec), leaf count = 27
\[\left \{\left \{y(x)\to \wp \left (x-c_1;a,b\right )\right \},\left \{y(x)\to \wp \left (x+c_1;a,b\right )\right \}\right \}\] ✓ Maple : cpu = 0.197 (sec), leaf count = 232
\[ \left \{ y \left ( x \right ) ={\frac {1}{6} \left ( \left ( 27\,b+3\,\sqrt {-3\,{a}^{3}+81\,{b}^{2}} \right ) ^{{\frac {2}{3}}}+3\,a \right ) {\frac {1}{\sqrt [3]{27\,b+3\,\sqrt {-3\,{a}^{3}+81\,{b}^{2}}}}}},y \left ( x \right ) =-{\frac {1}{12} \left ( \left ( i \left ( 27\,b+3\,\sqrt {-3\,{a}^{3}+81\,{b}^{2}} \right ) ^{{\frac {2}{3}}}-3\,ia \right ) \sqrt {3}+ \left ( 27\,b+3\,\sqrt {-3\,{a}^{3}+81\,{b}^{2}} \right ) ^{{\frac {2}{3}}}+3\,a \right ) {\frac {1}{\sqrt [3]{27\,b+3\,\sqrt {-3\,{a}^{3}+81\,{b}^{2}}}}}},y \left ( x \right ) ={\frac {1}{12} \left ( i \left ( 27\,b+3\,\sqrt {-3\,{a}^{3}+81\,{b}^{2}} \right ) ^{{\frac {2}{3}}}\sqrt {3}-3\,i\sqrt {3}a- \left ( 27\,b+3\,\sqrt {-3\,{a}^{3}+81\,{b}^{2}} \right ) ^{{\frac {2}{3}}}-3\,a \right ) {\frac {1}{\sqrt [3]{27\,b+3\,\sqrt {-3\,{a}^{3}+81\,{b}^{2}}}}}},y \left ( x \right ) ={\it WeierstrassP} \left ( x+{\it \_C1},a,b \right ) \right \} \]