\[ y'(x)^3-2 y(x) y'(x)+y(x)^2=0 \] ✗ Mathematica : cpu = 6698.89 (sec), leaf count = 0 , timed out
$Aborted
✓ Maple : cpu = 0.065 (sec), leaf count = 261
\[ \left \{ x-\int ^{y \left ( x \right ) }\!6\,{\frac {\sqrt [3]{-108\,{{\it \_a}}^{2}+12\,\sqrt {3}\sqrt {27\,{{\it \_a}}^{4}-32\,{{\it \_a}}^{3}}}}{ \left ( -108\,{{\it \_a}}^{2}+12\,\sqrt {3}\sqrt {27\,{{\it \_a}}^{4}-32\,{{\it \_a}}^{3}} \right ) ^{2/3}+24\,{\it \_a}}}{d{\it \_a}}-{\it \_C1}=0,x-\int ^{y \left ( x \right ) }\!24\,{\frac {\sqrt [3]{-108\,{{\it \_a}}^{2}+12\,\sqrt {3}\sqrt {27\,{{\it \_a}}^{4}-32\,{{\it \_a}}^{3}}}}{ \left ( i\sqrt {3}-1 \right ) \left ( \left ( i\sqrt {3}-1 \right ) \left ( -108\,{{\it \_a}}^{2}+12\,\sqrt {3}\sqrt {27\,{{\it \_a}}^{4}-32\,{{\it \_a}}^{3}} \right ) ^{2/3}+48\,{\it \_a} \right ) }}{d{\it \_a}}-{\it \_C1}=0,x-\int ^{y \left ( x \right ) }\!24\,{\frac {\sqrt [3]{-108\,{{\it \_a}}^{2}+12\,\sqrt {3}\sqrt {27\,{{\it \_a}}^{4}-32\,{{\it \_a}}^{3}}}}{ \left ( \left ( i\sqrt {3}+1 \right ) \left ( -108\,{{\it \_a}}^{2}+12\,\sqrt {3}\sqrt {27\,{{\it \_a}}^{4}-32\,{{\it \_a}}^{3}} \right ) ^{2/3}-48\,{\it \_a} \right ) \left ( i\sqrt {3}+1 \right ) }}{d{\it \_a}}-{\it \_C1}=0 \right \} \]