\[ y'(x)=\frac {x F(-(x-y(x)) (y(x)+x))}{y(x)} \] ✓ Mathematica : cpu = 40.5569 (sec), leaf count = 187
\[\text {Solve}\left [\int _1^{y(x)} \left (\frac {K[2]}{F(-(x-K[2]) (K[2]+x))-1}-\int _1^x \left (\frac {2 K[1] K[2] F(-(K[1]-K[2]) (K[1]+K[2])) F'(-(K[1]-K[2]) (K[1]+K[2]))}{(F(-(K[1]-K[2]) (K[1]+K[2]))-1)^2}-\frac {2 K[1] K[2] F'(-(K[1]-K[2]) (K[1]+K[2]))}{F(-(K[1]-K[2]) (K[1]+K[2]))-1}\right ) \, dK[1]\right ) \, dK[2]+\int _1^x -\frac {K[1] F(-(K[1]-y(x)) (K[1]+y(x)))}{F(-(K[1]-y(x)) (K[1]+y(x)))-1} \, dK[1]=c_1,y(x)\right ]\] ✓ Maple : cpu = 0.144 (sec), leaf count = 61
\[ \left \{ y \left ( x \right ) =\sqrt {{x}^{2}+{\it RootOf} \left ( -{x}^{2}+\int ^{{\it \_Z}}\! \left ( F \left ( {\it \_a} \right ) -1 \right ) ^{-1}{d{\it \_a}}+2\,{\it \_C1} \right ) },y \left ( x \right ) =-\sqrt {{x}^{2}+{\it RootOf} \left ( -{x}^{2}+\int ^{{\it \_Z}}\! \left ( F \left ( {\it \_a} \right ) -1 \right ) ^{-1}{d{\it \_a}}+2\,{\it \_C1} \right ) } \right \} \]