\[ y'(x)=\frac {x^4+x^3+x^3 \log (x)+7 x^2 y(x)^2+7 x y(x)^2+y(x)+7 x y(x)^2 \log (x)}{x} \] ✓ Mathematica : cpu = 0.0306791 (sec), leaf count = 59
\[\left \{\left \{y(x)\to \frac {x \tan \left (\frac {1}{12} \left (12 \sqrt {7} c_1+4 \sqrt {7} x^3+3 \sqrt {7} x^2+6 \sqrt {7} x^2 \log (x)\right )\right )}{\sqrt {7}}\right \}\right \}\] ✓ Maple : cpu = 0.056 (sec), leaf count = 37
\[ \left \{ y \left ( x \right ) ={\frac {x\sqrt {7}}{7}\tan \left ( {\frac { \left ( 6\,{x}^{2}\ln \left ( x \right ) +4\,{x}^{3}+3\,{x}^{2}+12\,{\it \_C1} \right ) \sqrt {7}}{12}} \right ) } \right \} \]