\[ y'(x)=-\frac {y(x) \left (x^3 y(x)+x^2 y(x) \log (x)-x^2+e^x-x \log (x)-\log \left (\frac {1}{x}\right )\right )}{x \left (e^x-\log \left (\frac {1}{x}\right )\right )} \] ✗ Mathematica : cpu = 3599.95 (sec), leaf count = 0 , timed out
$Aborted
✓ Maple : cpu = 0.207 (sec), leaf count = 96
\[ \left \{ y \left ( x \right ) ={1{{\rm e}^{\int \!{\frac {x\ln \left ( x \right ) +{x}^{2}+\ln \left ( {x}^{-1} \right ) -{{\rm e}^{x}}}{ \left ( -\ln \left ( {x}^{-1} \right ) +{{\rm e}^{x}} \right ) x}}\,{\rm d}x}} \left ( \int \!{\frac {x \left ( x+\ln \left ( x \right ) \right ) }{-\ln \left ( {x}^{-1} \right ) +{{\rm e}^{x}}}{{\rm e}^{\int \!{\frac {x\ln \left ( x \right ) +{x}^{2}+\ln \left ( {x}^{-1} \right ) -{{\rm e}^{x}}}{ \left ( -\ln \left ( {x}^{-1} \right ) +{{\rm e}^{x}} \right ) x}}\,{\rm d}x}}}\,{\rm d}x+{\it \_C1} \right ) ^{-1}} \right \} \]