\[ y'(x)=\frac {y(x) \left (x^2 y(x) \log \left (\frac {(x-1) (x+1)}{x}\right )-x \log \left (\frac {(x-1) (x+1)}{x}\right )-\log (x)\right )}{x \log (x)} \] ✗ Mathematica : cpu = 3599.95 (sec), leaf count = 0 , timed out
$Aborted
✓ Maple : cpu = 0.165 (sec), leaf count = 89
\[ \left \{ y \left ( x \right ) ={1{{\rm e}^{\int \!{\frac {1}{x\ln \left ( x \right ) } \left ( -x\ln \left ( {\frac { \left ( x-1 \right ) \left ( 1+x \right ) }{x}} \right ) -\ln \left ( x \right ) \right ) }\,{\rm d}x}} \left ( \int \!-{\frac {x}{\ln \left ( x \right ) }{{\rm e}^{\int \!{\frac {1}{x\ln \left ( x \right ) } \left ( -x\ln \left ( {\frac { \left ( x-1 \right ) \left ( 1+x \right ) }{x}} \right ) -\ln \left ( x \right ) \right ) }\,{\rm d}x}}\ln \left ( {\frac { \left ( x-1 \right ) \left ( 1+x \right ) }{x}} \right ) }\,{\rm d}x+{\it \_C1} \right ) ^{-1}} \right \} \]