\[ y'(x)=\frac {2 y(x)+1}{x \left (2 x y(x)^4+3 x y(x)^3+x y(x)^2+2 x y(x)+x-2\right )} \] ✓ Mathematica : cpu = 0.693087 (sec), leaf count = 53
\[\text {Solve}\left [\frac {1}{192} \left (-16 y(x)^3-12 y(x)^2+12 y(x)-54 \log (4 y(x)+2)+7\right )-\frac {1}{2 x (2 y(x)+1)}=c_1,y(x)\right ]\] ✓ Maple : cpu = 0.316 (sec), leaf count = 50
\[ \left \{ y \left ( x \right ) ={\frac {{{\rm e}^{{\it RootOf} \left ( 2\,x \left ( {{\rm e}^{{\it \_Z}}} \right ) ^{4}-3\,x \left ( {{\rm e}^{{\it \_Z}}} \right ) ^{3}-6\,x \left ( {{\rm e}^{{\it \_Z}}} \right ) ^{2}+48\,x{\it \_C1}\,{{\rm e}^{{\it \_Z}}}+54\,{\it \_Z}\,{{\rm e}^{{\it \_Z}}}x+7\,{{\rm e}^{{\it \_Z}}}x+96 \right ) }}}{2}}-{\frac {1}{2}} \right \} \]