\[ y'(x)=\frac {x^4 y(x)^3-5 x^3 y(x)^2+6 x^2 y(x)-2 x y(x)-2 x+1}{x^2 \left (x^2 y(x)-x+1\right )} \] ✓ Mathematica : cpu = 0.0215573 (sec), leaf count = 78
\[\left \{\left \{y(x)\to \frac {1}{x^4 \left (\frac {1}{x^2}-\frac {1}{x^2 \sqrt {c_1+\frac {2}{x}}}\right )}+\frac {x-1}{x^2}\right \},\left \{y(x)\to \frac {1}{x^4 \left (\frac {1}{x^2 \sqrt {c_1+\frac {2}{x}}}+\frac {1}{x^2}\right )}+\frac {x-1}{x^2}\right \}\right \}\] ✓ Maple : cpu = 0.072 (sec), leaf count = 79
\[ \left \{ y \left ( x \right ) ={\frac {1}{{x}^{2}} \left ( \sqrt {{\frac {x{\it \_C1}+2}{x}}}x-x+1 \right ) \left ( \sqrt {{\frac {x{\it \_C1}+2}{x}}}-1 \right ) ^{-1}},y \left ( x \right ) ={\frac {1}{{x}^{2}} \left ( \sqrt {{\frac {x{\it \_C1}+2}{x}}}x+x-1 \right ) \left ( \sqrt {{\frac {x{\it \_C1}+2}{x}}}+1 \right ) ^{-1}} \right \} \]