ODE No. 89

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

xy(x)a2x2=0 Mathematica : cpu = 0.0322515 (sec), leaf count = 48

{{y(x)a2x2alog(aa2x2+a2)+alog(x)+c1}} Maple : cpu = 0.023 (sec), leaf count = 56

{y(x)=a2x2a2ln(1x(2a2+2a2a2x2))1a2+_C1}

Hand solution

xy=±a2x2

This is separable. y=±a2x2x or dy=±a2x2xdx. Hence

y=±a2x2xdx+C

Let x=asinu, then dx=acos(u)du and the integral becomes

a2x2xdx=a2a2sin2uasinuacos(u)du=a1sin2uasinuacos(u)du=acosusinucos(u)du=acos2usinudu=a1sin2usinudu=a(1sinudusinudu)(1)=a(1sinudu+cosu)

For 1sinudu, using half tan angle, let t=tan(u2),du=21+t2dt,sinu=2t1+t2, therefore

1sinudu=1+t22t21+t2dt=1tdt=ln(t)

Hence 1sinudu=ln(tan(u2)) and from (1)

a2x2xdx=a(1sinudu+cosu)=a(ln(tan(u2))+cosu)

But x=asinu, hence u=arcsin(xa) and the integral becomes

a2x2xdx=a[ln(tan(arcsin(xa)2))+cos(arcsin(xa))]

Hence the solution is

y=±a[ln(tan(arcsin(xa)2))+cos(arcsin(xa))]+C

Maple do not verify the above, but I do not see what is wrong with the solution. Will investigate more later.